گرافين

(تم التحويل من الگرافين)
يجب ألا يـُخلـَط بينها وبين گرافيم.
ترانزستورات من الگرافين على قطعة من الپلاستيك اللين. الگرافين ليس فقط أصلب مادة على وجه الأرض، بل أيضاً أكثرها ليونة. المصدر: النيويورك تايمز[1]
الگرافين هو مصفوفة مقياس مشط شمع العسل مصنوعة من ذرات الكربون.
صورة الگرافين في المجهر الالكتروني

گرافين هو مادة من ذرات كربون بسمك ذرة واحدة-ورقة مستوية sp2-bonded وهى مكتظة في شبكة بلورية تشبه مشط شمع العسل. ويمكن النظر إلى الگرافين على أنها سلك عشة الدجاج (الكيمياء) مصنوع من ذرات كربون بروابطها. الإسم يأتي من الگرافيت + -ene ; الگرافيت وهي نفسها تتكون من صحائف كثيرة من الگرافين مكدسة معاً.

وطول الرابط وبين ذرة الكربون والأخرى في الگرافين حوالي 0.142 نانومتر. الگرافين هو العنصر الأساسي الهيكلي لبعض نظائر الكربون يتسع بما فيها گرافيت أنابيب الكربون النانوية والفولرينات. ويمكن أيضا أن تعتبر كبيرة بلا حدود عطرى جزىء، الحالة المحدودة للعائلة هو هيدروكربونات عطرية متعددة الحلقات مسطحة تسمى الگرافينات.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

نظرة مستقبلية

دفع فوز العالمان المولودان في روسيا أندريه گايم و كونستانتين نوڤوسيلوڤ ، بجائزة نوبل للفيزياء لعام 2010، بفضل عملهما الطليعي على مادة الگرافين ، التي اعتبرت المادة المدهشة للقرن الحادي والعشرين. وبالبحث عن معلومات عن هذه الماده الثوريه. و مما يثير الدهشة كميه المعلومات المتوفره عنها و الافاق التى يمكن ان تفتحها تطبيقاتها فقد منحا الجائزه لانهما واشادت الاكاديمية بغيم (51 عاماً) ونوفوسيلوف (36 عاماً) لأنهما أظهرا أن الكربون بهذه الصيغة المسطحة، يمتلك ميزات استثنائية تنبع من عالم الفيزياء الكمية المدهش . وتكرم الجائزة اختراعاً مهد الطريق امام الغرافين، وهو نوع من الكربون اعتبر المادة الخارقة للجيل التالي .

ومادة الگرافين لا تتجاوز سماكتها سماكة الذرة، وهي ارفع واقوى مادة متناهية الصغر في العالم، كما أنها تكاد تكون شفافة ويمكنها نقل الكهرباء والحرارة . ومن هنا وصف الغرافين بأنه المادة المرشحة لأن تحل محل اشباه الموصلات السيليكونية .

ويتوقع ان تتمكن الترانزيستورات المركبة من الگرافين ، من العمل بسرعة اكبر والتأقلم مع درجات حرارة أعلى من رقاقات الكمبيوتر المستخدمة حالياً.

وبحسب بيان صحفي صدر عن الأكاديمية اليوم ؛ تمكن العالمان ، اللذان بدآ العمل في مجال بحوث الفيزياء في روسيا، في السابق من استخلاص مادة الگرافين من قطعةاعتيادية من الگرافيت ، وهي رقاقة من الكربون تعادل في سماكتها سماكة ذرة واحدة من هذا العنصر، وذلك في الوقت الذي كان يعتقد الكثيرون باستحالة ثباتية هذا البناء البلوري.


الگرافين .. سحر الكربون وروعة التشكيل

يعتبر الگرافين شكل من أشكال الكربون، وهو من المواد الواعدة في مجال علم المادة، إذ يمتلك خصائص فريدة مقارنة مع بقية المواد؛ فهو يتفوق على النحاس في قدرته على توصيل الكهرباء، فيما تفوق قدرته على توصيل الحرارة المواد الأخرى. ويعد الگرافين أقل المواد سماكة وأشدها قوة، وهو مادة شفافة عالية الكثافة تتألف من شبكة من ذرات الكربون ثنائية الأبعاد، لها شكل مشابه لشكل بيوت النحل المتراصة، وهو يعد وحدة البناء الأساسية لمادة الجرافيت الشهيرة. واعتقد العديد من الباحثين لفترات طويلة أن مادة الگرافين لا يمكن ان تتواجد بشكل ثابت، لذا فهي من الناحية العملية مادة" أكاديمية"؛ إذ أنها وبسبب رقة سماكتها قد تلتف فوق بعضها، أو تتكسر، أوحتى تتلاشى قبل عزلها.


اختراق علمي بقلم رصاص وشريط لاصق

تمكن العالمان "أندريه گايم" و"كونستانتين نوڤوسيلوڤ"، وهما من مواليد الاتحاد السوفياتي سابقاً، من استخلاص مادة الگرافين- التي كان يعتقد بأنه من المحال أن تتواجد بشكل ثابت- من قطعة من الجرافيت، وذلك عن طريق استخدام شريط لاصق عادي، حيث تمكنا في نهاية سلسلة من التجارب من استخلاص رقاقة من الكربون بسماكة تعدل سماكة ذرة واحدة. وبحسب مختصين؛ يتألف كل ملميتر من الجرافيت من ثلاثة ملايين طبقة من الگرافين متراصة فوق بعضها البعض، وهي غير متماسكة بقوة، لذا من السهل فصلها عن بعضها، الأمر الذي يبرز عند الكتابة بقلم الرصاص، حيث يتكون رأسه من مادة الگرافيت. واستخدم العالمان خلال تجربة صممت بأسلوب علمي قِطعاً من الأشرطة اللاصقة العادية، حيث عملوا بواسطتها على نزع رقاقات من الگرافيت بشكل متكرر، وكانا يحصلا في كل مرة على رقاقات تتألف من طبقات متعددة من الگرافين. ومن ثم عمد الباحثان إلى ربط القطع المنفصلة من الگرافيت بسطح من مادة السيليكون المتاكسد، والمستخدم في صناعة أشباه الموصلات، ليتمكنا أخيراً من رؤية الجرافين بشكله البديع تحت عدسة المجهر الضوئي العادي، ما يعني أنهما تمكنا من فصل الجرافين والتحقق من وجوده بشكل ثابت على درجة حرارة الغرفة.

الگرافين .. تطبيقات مذهلة

يمتلك الجرافين خصائص فريدة تجعل منه مادة مثيرة للاهتمام بالنسبة للعديد من التطبيقات، فهو مادة شفافة بالغة الرقة (قليلة السماكة)، وتمتاز بمرونتها العالية وقوتها الفائقة. ويمكن استخدام الجرافين لشفافيته في تصنيع الشاشات التي تعمل باللمس، لوحات الإنارة والخلايا الضوئية، كما يمكن الإفادة من هذه المادة في صناعة مجسات الغاز والإلكترونيات ذات المرونة العالية والقابلة للطي(كأجهزة المحمول والشاشات الإلكترونية)، مع إمكانية استعمالها في تصنيع بعض أجزاء الطائرات والأقمار الصناعية التي يتوجب أن تصنع من مواد تتمتع بخفة الوزن والتركيبة القوية. كما تعد الترانزيستورات المصنعة من الجرافين بتطوير الحواسيب بشكل مذهل، لتتفوق في أدائها على الحواسيب الحالية بشكل كبير. إلى جانب ذلك تلمح الدراسات إلى أن إمكانية استخدام الجرافين في تطوير بعض المواد مثل البلاسيتك، فإضافة الجرافين بنسبة بسيطة (واحد في المائة) إلى البلاستيك، سيزيد من مرونة الأخيرة ويرفع من قدرتها على تحمل الحرارة، ويجعلها من المواد الموصلة للكهرباء، ما يفتح المجال أمام استخدام هذا النوع من المواد المطورة في العديد من التطبيقات المثيرة.(قدس برس)

فالسرعة الفائقة التي وصلت لها معالجات الحاسب في هذه الأيام قد تتوقف و ذلك لأن السيليكون الذي تبنى عليه هذه المعالجات قارب على استنفاد قدراته الفيزيائية مما أدى بالباحثين على بدء البحث عن بديل. قام بروفسور من جامعة جورجيا تك بالتوصل لنتيجة مفادها أن استخدام الجرافين عوضاً عن السيليكون في بناء المعالجات سيضاعف سرعة هذه المعالجات بنسبة كبيرة و يفتح آفاقاً جديدة في صنع هذه الترانزستورات. الجرافين ليس بمادة جديدة بل تستخدم في تصنيع العديد من المواد ومنها أقلام الرصاص.

الحاسبات المبنية على السيليكون تقوم بعمليات عديدة في الثانية بدون أن ترتفع درجة حرارتها ولكن لحد معين، أما الجرافين فإن الالكترونات تمر فيه بدون مقاومة تقريباً و ترتفع درجة حرارته بنسبة قليلة جداً و ذلك لأنه موصل جيد للحرارة و فقده للحرارة بسرعة يجعله مناسباً لاستخدامه في الالكترونيات. أيضاً فإن سرعة المعالجات المبنية على السيليكون ستبقى محصورة في نطاق الـ GigaHertz أما الجرافين سيمكنها من اختراق الـ TeraHertz. استخدامات الجرافين لن تكون محصورة في المعالجات و الترانزستورات و لكنها ستمتد لتقنيات الاتصالات و التصوير و الكشف الموجي و الكشف عن الأسلحة و ذلك لأن جميع هذه التطبيقات تتطلب سرعة فائقة لم يتم التوصل لها حتى الآن. يواجه العلماء عائقاً وحيدأ في استخدام الجرافين، وهو أنه ليس بشبه موصل تماماً كما السيليكون و هذه الخاصية مهم تواجدها في الترانزستورات و إلا فإنها ستتسبب بخسارة كميات من الطاقة دون فائدة، ولكن العلماء قاربوا على تجاوز هذه العقبة و جعله يقارب السيليكون بخصائصه في التوصيل. لقد جذب هذا الفتح العلمي الكثير من شركات التقنية التي تترقب التطورات في الأبحاث المتعلقة بالجرافين وتدعم بعضها ومنها : إتش پي، آي بي إم وإنتل. فالباحثون بحثوا طويلا عن بديل آخر نظراً لأن الحاسبات المبنية على السيليكون تقوم بعمليات عديدة في الثانية من دون أن ترتفع حرارتها ولكن لحد معين.

ومنذ عدة سنوات لم يتوان الفيزيائيون عن أن يتخيلوا ويجربوا كل ما عرفوا وما لم يعرفوا من مواد للتوصل إلى مادة تزيد من سرعة المعالجات بنسبة كبيرة وفتح آفاق جديدة في صنع الترانزستورات التي تتكون منها هذه المعالجات.

كانت نتيجة هذه الأبحاث توصل الباحثين إلى مادة الجرافين التي تستخدم في تصنيع العديد من المواد مثل أقلام الرصاص، ومن مميزات الجرافين أنه من الناحية البنيوية الشبكية يعتبر المادة المتبلرة الوحيدة ذات البعدين في الفراغ بمعنى أن ذرات الكربون فيها مرتبة على شكل مسدس الزوايا والأضلاع كخلية النحل تماماً. هذا الأمر يجعله يكون جزيئاً مسطحاً وبسمك ذرة واحدة أي ما يعادل 0،1 نانومتر.

وكان الباحثان الأمريكيان ديڤد مرمين وهربرت واگنر توصلا في 1966 إلى أن الگرافيت الذي تصنع منه أقلام الرصاص، يتأثر بعامل الحرارة أو الاستثارة الحرارية، أي أن طبقة واحدة من الذرات يمكن أن تضطرب في بنيتها الشكلية، وبالتالي فإن المادة نفسها يمكن أن تتحول إلى سائل أو مادة مائعة نظراً لأنه لا يمكن عزلها.

هذا الأمر لم يمنع الفيزيائي الهولندي ذا الأصل الروسي أندريه گايم وفريقه العلمي من جامعة مانشستر، من أن ينجحوا في عزل بلورة الجرافين، اللهم إلا أن الجرافين ليس مسطحاً تماماً ويظهر عن تموجات دقيقة جداً قادرة على امتصاص طاقة الاستثارة الحرارية.

ومنذ اكتشافه لم يكف الجرافين عن إظهار خصائص جديدة غير مسبوقة، فخصائصه تبين أنه مادة شفافة وموصلة ومثالية في مجال صناعة الألواح الشمسية أو البلورات السائلة كما أن مقاومته الميكانيكية تبشر بأنه سيكون من المواد فائقة الصلابة، فضلاً عن ذلك فإن خواصه الإلكترونية أثارت دهشة العلماء بالفعل لأن سرعة النقل الإلكتروني فيه مرتفعة بشكل لا يصدق أي أن الإلكترونات تمر عبره من دون مقاومة تقريباً وترتفع درجة حرارته بنسبة قليلة جداً وذلك لأنه موصل جيد للحرارة وفقده لها سريع جداً الأمر الذي يجعله مناسباً للاستخدام في الإلكترونيات.

ويشير الباحثون إلى أن سرعة انتقال الإلكترونات فيه تزيد على سرعتها في السيليكون بثلاثين مرة. علاوة على ذلك فإن سرعة المعالجات المبنية على السيليكون ستبقى محصورة في نطاق الگـٍگاهرتس أما الگرافين فسيمكنها من اختراق نطاق التـِراهرتس.

في هذه الآونة تنشط المختبرات العلمية لإنتاج الجرافين بكميات تجارية بطريقتين: الأولى منها يديرها معهد تكنولوجيا جورجيا بمدينة أتلانتا الأمريكية وتتمثل في رفع حرارة بلورة كربيد السيليكون إلى أكثر من 1000 درجة مئوية إلى أن تتفكك وتتبخر. وينتج عن هذه العملية بقاء ذرات الكربون التي ترتبط فيما بينها بشكل تلقائي مشكلة شبكة سداسية من الگرافين. وتقول كلير برجيه التي تعمل في هذا المعهد بفخر: “يبلغ عرض وريقات الجرافين التي ينتجها المختبر بضع عشرات من الميكرومتر، لكن الأهم من ذلك هو أننا استطعنا خلال هذه السنة أن نثبت أن نقاوة العينات التي أنتجناها كانت كافية لاستخدامها في التطبيقات الميكروإلكترونية، ما يعني أن مرحلة الإنتاج على المستوى التجاري قد انطلقت بالفعل في ديسمبر 2008 في أتلانتا”.

الطريقة الثانية التي يسعى إلى التحضير لها الباحث تيري بوارو من مختبر الأبحاث التطبيقية في مجال الإلكترونيات بمدينة گرنوبل الفرنسية، تستفيد من اكتشاف الباحثين الفرنسيين أنه عندما نؤكسد الجرافيت في وسط حمضي فإن وريقاته تتفكك وتتحول إلى جرافين وبالتالي فإنه يكفي تنقية البلورة باستخدام محلول مختزل. وفي الآونة الأخيرة، تمكن فريق من الباحثين من جامعة كاليفورنيا من اكتشاف أن مادة الهيدرازين (مركب من الآزوت والهيدروجين) قادرة على أن تقوم بالدور الذي تقوم به الجرافين بشكل ممتاز حيث يمكن للباحثين الحصول على طبقات ذات درجة توصيل عالية وبسعر أرخص من الطريقة الأولى.

استخدامات الجرافين لن تبقى محصورة في المعالجات والترانزستورات بل ستمتد إلى تقنيات أخرى كالاتصالات والتصوير والكشف الموجي والكشف عن الأسلحة والبيولوجيا للكشف عن متتاليات الحمض النووي وذلك لأن جميع هذه التطبيقات تتطلب سرعة فائقة.

ويقول الباحث أندريه گايم إن الجرافين بمثابة الرحمة للفيزيائي لأنه من الناحية النظرية يمكنه من خلال ذرة واحدة الحوصل على مادة ثنائية الأبعاد وفائقة التوصل، ففي وريقة واحدة من الجرافين تتحرك الشحنات الكهربية كالجسيمات الكمومية النسبوية وكأنها في الحقيقة فقدت كتلتها مما يجعلها تتحرك بسرعة الضوء. ويضيف گايم أن هذا النوع من الفيزياء الذرية كان بعيد المنال، ولذا يمكنني تشبيه الجرافين بأنه يعمل كمعجل للجسيمات، وستكون السنوات الخمس عشرة المقبلة فاصلة في موضوع التطورات التي سيشهدها عالم الكمبيوتر بشكل خاص.. كيف لا وهو أشد مقاومة من الفولاذ بمائتي مرة؟ فهى مادة أشد صلابة من الألماس.

الوصف

مثال الگرافين الكامل يتألف حصرا من خلايا سداسية وأما الخلايا الخماسية والسباعية فتشكل عيوباً. إذا وجدت خلية خماسية معزولة، ثم يلتف المستوى متحولا إلى مخروط الشكل؛ وبإدخال 12 تركيباً خماسيا من شأنه أن يخلق الفولرين. بالمثل إدراج جزىء سباعي معزول يتسبب في تكوين مسطح يشبه السرج. وبإضافة أشكال خماسية مع أشكال سباعية من شأنه أن يسمح لطائفة واسعة من الأشكال المعقدة أن تتم، على سبيل المثال الكربون نانوبد هو من الأنابيب الجزيئية الكربونية وحيدة الجدار ويمكن اعتبارها من أسطوانات الگرافين؛ بعضها لديها الگرافين بشكل القبعة نصف الكروية (التي تضم 6 أشكال خماسية) في كل نهاية.

المادة الأقوى في العالم: ووجد الباحثون الذين وضعوا الگرافين، أنه ذرة واحدة سميكة مع رأس حاد قوى من الألماس انه أقوى مادة جرى اختبارها على الإطلاق، الرسم التوضيحي يبين التركيب الذري من للگرافين، وهو شبكة من ذرات الكربون والهيدروجين. فضل: Jeffrey Kysar، جامعة كلومبيا.

تعريف الگرافين رسميا في المصطلح الكيميائي في 1994[2] قالتIUPAC ما يلى:

طبقة كربون مفردة في التركيب الگرافيتى يمكن إعتبارها كالعضو النهائى في سلسلة النفتالين , الأنثراسين , الكورونين، إلخ والإسم گرافين ينبغي أن يستخدم للدلالة على طبقة في الكربون الفردية في المركبات الگرافيتية, إستخدام "طبقة الگرافين" يعد أيضا من المصطلح العام للكربون .

في أوباك وهى خلاصة التكنولوجيا وتنص على أنه: "في السابق قد استخدمت أوصاف مثل طبقات الجرافيت وطبقات الكربون ، أو أغلفة الكربون أستخدمت لأجل المصطلح گرافين..و لايصح استخدامه لطبقة واحدة وهو مصطلح يشمل الجرافيت ، التي من شأنها أن تنطوي على هيكل ثلاثي الأبعاد . وينبغي استخدام مصطلح الگرافين فقط عند مناقشة التفاعلات، والعلاقات الهيكلية أو غيرها من الخواص حول الطبقات الفردية ". وفي هذا الصدد ، يشار إلى الگرافين باعتباره متغير لانهائي (حلقة فقط من الكربون من ستة أعضاء) هيدروكاربون عطرى عديد الحلقات (PAH) وأكبر جزيء من هذا النوع يتكون من 222 ذراة بسمك 10 حلقات من البنزين .[3]

التواجد والانتاج

في أدبيات العلم، وتحديدا في الأوساط العلمية شار إلى أن السطح ، كما في الگرافين والگرافيت أحادي الطبقة. لقد درس هذا المجتمع بشكل مكثف الگرافين الفوقي على السطوح المختلفة فقد حررت (أكثر من 300 من المقالات السابقة حتى عام 2004). وفي بعض الحالات ، تقترن هذه الطبقات الگرافين على الأسطح ضعيف بما فيه الكفاية (عن طريق قوة فان دير فال ) للإبقاء على هيكل الرابطة الإليكترونية ثنائية الأبعاد ,[4][5] كما يحدث أيضا[6] مع رقائق گرافيننية قابلة للتقشير فيما على سبيل المثال ، بتجارب على الگرافين وحيد الطبقة الفوقي على كربيد السيليكون ,[7][8] قد قدمت إستعراضا لطيف جزيئات الديراك في الجرافين عديمة الكتلة , والتي هي السمة المميزة, التى تميز هيكلها الإليكترونى .إن قوى ڤان دير فال الضعيفة , التى تعطى التماسك و الإلتصاق لصفوف الگرافين عديدة الطبقات لا تؤثر دائما على الخصائص الإلكترونية لطبقات الگرافين المفردة المكدسة . وهذا هو ، في حين أن الخصائص الإلكترونية المعينة للگرافين الفوقي متعدد الطبقات مماثلة لتلك التي من الگرافين ذى الطبقة للواحدة ,[9] في حالات أخرى تتأثر الخصائصaffected [7][8] لأنها لطبقات الگرافين في الجرافيت بكميات كبيرة. هذا التأثير هو نظريا مفهوم جيدا ويرتبط مع التماثل في تفاعلات مابين الطبقات.[9]

وقد بدأت طفرة الگرافين في عام 2004 ، عندما بدأ الفيزيائيين من جامعة مانشستر مؤسسو معهد تكنولوجيا الالكترونيات الدقيقة, تشيرنوجولوڤكا, روسيا, حيث وجدوا[6] طريقة لإستخلاص الگرافين بتقشيره من الكرافيت بواسطة شريط لاصق و التعرف عليه بصريا بنقلهم إلى طبقة من ثاني أكسيد السيليكون على شريحة سليكون . و مع ذلك فإن الگرافين من المحتمل أن يغوص في غياهب النسيان , ما عدا انه في عام 2005 مجموعة مانشستر نفسها جنبا إلى جنب مع باحثين من جامعة كولومبيا (see the History chapter below) شأنه أن يبرهن على أن أشباه الگرافين هي فرميونات ديراك عديمة الكتلة. ويفترض الآن أنها تنتج شظايا صغيرة من أوراق الجرافين (جنبا إلى جنب مع كميات أخرى من الحطام كلما تآكل الكرافيت مثلما يحدث عند رسم خط بالقلم الرصاص.[10] الگرافين الناتج بواسطة التقشير في الوقت الحاضر يعد واحدا من أغلى المواد على الأرض ،فإذا أخذنا في الإعتبار عينة يمكن وضعها في مسافة قطر شعرة رأس الإنسان فهى تتكلف أكثر من 1000 $ بتاريخ أبريل 2008 (حوالى $100,000,000/سم2.2).[10] وقد ينخفض سعر الكرافين بشكل كبير ، على الرغم من ذلك, وإذا تم تطوير طرق الانتاج التجاري في المستقبل. من ناحية أخرى ، فسوف يهيمن سعر الكرافين الفوقي على كربيد السيليكون الركيزة وسوف يصبح السعر حوالى 100 دولار/سم2 /cm2 حسب 2009. هذا تقريبا 1,000,000 مرة أرخص من الكرافين المنتج بالتقشير تقشر.

طريقة الرسم

و قد حصل الباحثون الإنكليز على بلورات كبيرة نسبيا , أولا البلورة (أولا ، عدد قليل فقط من الميكرون في الحجم ، ولكن في نهاية المطاف ، أكبر من1 مم ومرئية بالعين المجردة من قبل) ميكانيكية تقشير (تكرار التقشير) ثرى-دى.

بلورات الكرافيت ، وكان يزعم أن دوافعهما لدراسة الخصائص الكهربائية لأفلام رقيقة من االكرافيت ، لأن بلورات ثنائي الأبعاد بحتةلم تكن معروفة من قبل ويفترض أن إكتشافهم لمستويات منفردة للكرافيت كان يفترض أنه جاء عن طريق الصدفة البحتة .وأكدت الناحيتين النظرية والتجريبية في وقت سابق ان التركيب ثنائي الأبعاد (2D) لا يمكن أن يوجد في الحالة الحرة.

ويعتقد أن التخشين المجهري الداخلى على مقياس من 1 نانومتر يمكن أن يكون هاما لثبات البلورات ثنائية الأبعاد .[11]

النتائج المتحصل عليها في العمل[12] وقد أكدت ذلك عدة مجموعات. ليس فقط الگرافين ولكن طبقات ذرية قائمة بذاتها من الميكا ونيتريد البورون ،dichalcogenides قد تم التعبير عنها في هذه الورقة. وللحصول على مثال ما يشبه الگرافين ، انظر الصورة إلى ما أسفل.

النمو الفوقي على كربيد السيليكون

طريقة أخرى هي تسخين كربيد السيليكون لدرجات الحرارة العالية (>1100 °C) كى يختزل إلى گرافين .[13] هذه العملية تنتج حجم عينة , التى تعتمد على حجم ال SiC substrate المستخدم. وجه كربيد السيليكون المستخدمة لإنشاء الجرافين , وإنهاء السيليكون أو إنهاء الكربون تؤثر بشدة على السمك والتنقل وكثافة الناقل من الجرافين. وقد تم تحديد العديد من الخصائص الهامة للجرافين من الجرافين المنتج بهذا الأسلوب. وعلى سبيل المثال ، electronic band-structure أو (ما يسمى هيكل مخروط ديراك) تم تصوره أول الأمر في هذه المواد .[7][8][14] لوحظ ضعف المضادة للتوطين في هذه المادة وليس في الجرافين المنتج بطريقة التقشير التي طورت بتتبع أسلوب القلم الرصاص .[15] وقد لوحظت ، درجات حرارة كبيرة للغاية و تنقلات مستقلة في الجرافين كربيد الفوقي. لأنها تقترب من تلك للجرافين المقشر الذى يوضع على أكسيد السيليكون لكنها ما زالت أقل بكثير من التنقلات في الجرافين التي علقت وتنتجها طريقة الرسم

يمكن أن يكون نمط الجرافين بشكل النمو على طبقة شفافة على كربيد السيليكون باستخدام معيار الالكترونيات الدقيقة الأساليب. كان اول من اقترح إمكانية إلكترونيات المتكاملة كبير على الجرافين كربيد الفوقي في 2004 [16] by researchers at the Georgia Institute of Technology, only a couple of months after the discovery of isolated graphene made the drawing method. (A patent for graphene based electronics was applied for in 2003 and issued in 2006). Since then, important advances have been made. In 2008, researchers at MIT Lincoln Lab have produced hundreds of transistors on a single chip[17] and in 2009 and very high frequency transistors have been produced at the Hughes Research Laboratories on monolayer graphene on silicon carbide.[18]

Epitaxial growth on metal substrates

This method uses the atomic structure of a metal substrate to seed the growth of the graphene (epitaxial growth). Graphene grown on ruthenium doesn't typically yield a sample with a uniform thickness of graphene layers, and bonding between the bottom graphene layer and the substrate may affect the properties of the carbon layers.[19] Graphene grown on iridium on the other hand is very weakly bonded, uniform in thickness, and can be made highly ordered. Like on many other substrates, graphene on iridium is slightly rippled. Due to the long-range order of these ripples generation of minigaps in the electronic band-structure (Dirac cone) becomes visible.[20] High-quality sheets of few layer graphene exceeding 1 cm2 (0.2 sq in) in area have been synthesized via chemical vapor deposition on thin nickel films. These sheets have been successfully transferred to various substrates, demonstrating viability for numerous electronic applications.[21]

Hydrazine reduction

Researchers have developed a method of placing graphene oxide paper in a solution of pure hydrazine (a chemical compound of nitrogen and hydrogen), which reduces the graphene oxide paper into single-layer graphene.[22]

Sodium reduction of ethanol

A recent publication has described a process for producing gram-quantities of graphene, by the reduction of ethanol by sodium metal, followed by pyrolysis of the ethoxide product, and washing with water to remove sodium salts.[23]

من الأنابيب النانوية

Experimental methods for the production of graphene ribbons are reported consisting of cutting open الأنابيب النانوية.[24] In one such method multi walled carbon nanotubes are cut open in solution by action of potassium permanganate and sulfuric acid.[25] In another method graphene nanoribbons are produced by plasma etching of nanotubes partly embedded in a polymer film [26]

الخصائص

البنية الذرية

The atomic structure of isolated, single-layer graphene was studied by transmission electron microscopy (TEM) on sheets of graphene suspended between bars of a metallic grid.[11] Electron diffraction patterns showed the expected hexagonal lattice of graphene. Suspended graphene also showed "rippling" of the flat sheet, with amplitude of about one nanometer. These ripples may be intrinsic to graphene as a result of the instability of two-dimensional crystals,[27][28][29] or may be extrinsic, originating from the ubiquitous dirt seen in all TEM images of graphene. Atomic resolution real-space images of isolated, single-layer graphene on silicon dioxide substrates were obtained[30][31] by scanning tunneling microscopy. Graphene processed using lithographic techniques is covered by photoresist residue, which must be cleaned to obtain atomic-resolution images.[30] Such residue may be the "adsorbates" observed in TEM images, and may explain the rippling of suspended graphene. Rippling of graphene on the silicon dioxide surface was determined by conformation of graphene to the underlying silicon dioxide, and not an intrinsic effect.[30]

Graphene sheets in solid form (density > 1 g/cm3) usually show evidence in diffraction for graphite's 0.34 nm (002) layering. This is true even of some single-walled carbon nanostructures.[32] However, unlayered graphene with only (hk0) rings has been found in the core of presolar graphite onions.[33] Transmission electron microscope studies show faceting at defects in flat graphene sheets,[34] and suggest a possible role in this unlayered-graphene for two-dimensional dendritic crystallization from a melt.

الخصائص الإلكترونية

GNR band structure for zig-zag type. Tightbinding calculations show that zigzag type is always metallic.
GNR band structure for arm-chair type. Tightbinding calculations show that armchair type can be semiconducting or metallic depending on width (chirality).

Graphene differs from most conventional three-dimensional materials. Intrinsic graphene is a شبه فلز or zero-gap شبه موصل. Understanding the electronic structure of graphene is the starting point for finding the band structure of graphite. It was realized early on that the E-k relation is linear for low energies near the six corners of the two-dimensional hexagonal Brillouin zone, leading to zero effective mass for electrons and holes.[35] [36] Due to this linear (or “conical") dispersion relation at low energies, electrons and holes near these six points, two of which are inequivalent, behave like relativistic particles described by the Dirac equation for spin 1/2 particles.[37][38] Hence, the electrons and holes are called Dirac fermions, and the six corners of the Brillouin zone are called the Dirac points.[37] The equation describing the E-k relation is '"`UNIQ--postMath-00000001-QINU`"'; where the Fermi velocity vF ~ 106 m/s.[38]

النقل الإلكتروني

Experimental results from transport measurements show that graphene has a remarkably high electron mobility at room temperature, with reported values in excess of 15,000 cm2V−1s−1.[29] Additionally, the symmetry of the experimentally measured conductance indicates that the mobilities for holes and electrons should be nearly the same.[36] The mobility is nearly independent of temperature between 10 K and 100 K,[39][40][41] which implies that the dominant scattering mechanism is defect scattering. Scattering by the acoustic phonons of graphene places intrinsic limits on the room temperature mobility to 200,000 cm2V−1s−1 at a carrier density of 1012 cm−2.[41][42] The corresponding resistivity of the graphene sheet would be 10−6 Ω·cm, less than the resistivity of silver, the lowest resistivity substance known at room temperature.[43] However, for graphene on silicon dioxide substrates, scattering of electrons by optical phonons of the substrate is a larger effect at room temperature than scattering by graphene’s own phonons, and limits the mobility to 40,000 cm2 V−1s−1.[41]

Despite the zero carrier density near the Dirac points, graphene exhibits a minimum conductivity on the order of 4e2/h. The origin of this minimum conductivity is still unclear. However, rippling of the graphene sheet or ionized impurities in the SiO2 substrate may lead to local puddles of carriers that allow conduction.[36] Several theories suggest that the minimum conductivity should be 4e2/πh; however, most measurements are of order 4e2/h or greater[29] and depend on impurity concentration.[44]

Recent experiments have probed the influence of chemical dopants on the carrier mobility in graphene.[44][45] Schedin, et al. doped graphene with various gaseous species (some acceptors, some donors), and found the initial undoped state of a graphene structure can be recovered by gently heating the graphene in vacuum. Schedin, et al. reported that even for chemical dopant concentrations in excess of 1012 cm−2 there is no observable change in the carrier mobility.[45] Chen, et al. doped graphene with potassium in ultra high vacuum at low temperature. They found that potassium ions act as expected for charged impurities in graphene,[46] and can reduce the mobility 20-fold.[44] The mobility reduction is reversible on heating the graphene to remove the potassium.

Due to its two-dimensional property, charge fractionalization (the fractioning of electrons into anyons) is thought to occur in graphene. It is though that it may therefore be a suitable material for the construction of quantum computers using anyonic circuits.[47][48]

الخصائص البصرية

Photograph of graphene in transmitted light. This one atom thick crystal can be seen with the naked eye because it absorbs approximately 2.3% of white light, which is π times fine-structure constant.

Graphene's unique electronic properties produce an unexpectedly high opacity for an atomic monolayer, with a startlingly simple value: it absorbs πα ≈ 2.3% of white light, where α is the fine-structure constant.[49] This is "a consequence of the unusual low-energy electronic structure of monolayer graphene that features electron and hole conical bands meeting each other at the Dirac point ... [which] is qualitatively different from more common quadratic massive bands".[50] Based on the Slonczewski-Weiss-McClure (SWMcC) band model of graphite, the interatomic distance, hopping value and frequency cancel when the optical conductance is calculated using the Fresnel equations in the thin-film limit.

This has been confirmed experimentally, but the measurement is not precise enough to improve on other techniques for determining the fine-structure constant.[51]

Recently it has been demonstrated that the bandgap of graphene can be tuned from 0 to 0.25 eV (about 5 micron wavelength) by applying voltage to a dual-gate bilayer graphene field-effect transistor (FET) at room temperature.[52]. The optical response of graphene nanoribbons has also been shown to be tunable into the terahertz regime by an applied magnetic field [53]

الامتصاص القابل للتشبع

It is further confirmed that such unique absorption could become saturated when the input optical intensity is above a threshold value. This nonlinear optical behavior is termed saturable absorption and the threshold value is called the saturation fluency. Graphene can be saturated readily under strong excitation over the visible to near-infrared region, due to the universal optical absorption and zero band gap. This has relevance for the mode locking of fiber lasers, where wideband tuneability may be obtained using graphene as the saturable absorber. Due to this special property, graphene has wide application in ultrafast photonics.[54][55][56]

نقل السپين

Graphene is thought to be an ideal material for spintronics due to small spin-orbit interaction and near absence of nuclear magnetic moments in carbon. Electrical spin-current injection and detection in graphene was recently demonstrated up to room temperature.[57][58][59] Spin coherence length above 1 micron at room temperature was observed,[57] and control of the spin current polarity with an electrical gate was observed at low temperature.[58]

تأثير هال الكمومي الشاذ

The quantum Hall effect is relevant for accurate measuring standards of electrical quantities, and in 1985 Klaus von Klitzing received the Nobel prize for its discovery. The effect concerns the dependence of a transverse conductivity on a magnetic field, which is perpendicular to a current-carrying stripe. Usually the phenomenon, the quantization of the so-called Hall conductivity σxy at integer multiples of the basic quantity e2/h (where e is the elementary electric charge and h is Planck's constant) can be observed only in very clean Si or GaAs solids, and at very low temperatures around -270 °C, and at very high magnetic fields.

Graphene in contrast, besides its high mobility and minimum conductivity, and because of certain pseudo-relativistic peculiarities to be mentioned below, shows particularly interesting behavior just in the presence of a magnetic field and just with respect to the conductivity-quantization: it displays an anomalous quantum Hall effect with the sequence of steps shifted by 1/2 with respect to the standard sequence, and with an additional factor of 4. Thus, in graphene the Hall conductivity is '"`UNIQ--postMath-00000002-QINU`"', where '"`UNIQ--postMath-00000003-QINU`"' is the above-mentioned integer "Landau level" index, and the double valley and double spin degeneracies give the factor of 4.[29] Moreover, in graphene these remarkable anomalies can even be measured at room temperature, i.e. at roughly 20 °C.[39] This anomalous behavior is a direct result of the emergent massless Dirac electrons in graphene. In a magnetic field, their spectrum has a Landau level with energy precisely at the Dirac point. This level is a consequence of the Atiyah-Singer index theorem. and is half-filled in neutral graphene,[37] leading to the "+1/2" in the Hall conductivity.[60] Bilayer graphene also shows the quantum Hall effect, but with the standard sequence, i.e. with '"`UNIQ--postMath-00000004-QINU`"' i.e. with only one of the two anomalies. Interestingly, concerning the second anomaly, the first plateau at N = 0 is absent, indicating that bilayer graphene stays metallic at the neutrality point.[29]

Unlike normal metals, the longitudinal resistance of graphene shows maxima rather than minima for integral values of the Landau filling factor in measurements of the Shubnikov-de Haas oscillations, which show a phase shift of π, known as Berry’s phase.[36][39] The Berry’s phase arises due to the zero effective carrier mass near the Dirac points.[61] Study of the temperature dependence of the Shubnikov-de Haas oscillations in graphene reveals that the carriers have a non-zero cyclotron mass, despite their zero effective mass from the E-k relation.[39]

Nanostripes: Spin-polarized edge currents

Nanostripes of graphene (in the "zig-zag" orientation), at low temperatures, show spin-polarized metallic edge currents, which also suggests applications in the recent field of spintronics. (In the "armchair" orientation, the edges behave semiconducting.[62])

أكسيد الگرافين

By oxidizing and chemically processing graphene, and then floating them in water, the graphene flakes form a single sheet and bond very powerfully. These sheets, called Graphene oxide paper have a measured Tensile Modulus of 32 GPa.[63]

التعديل الكيميائي

Soluble fragments of graphene can be prepared in the laboratory[64] through chemical modification of graphite. First, microcrystalline graphite is treated with a strongly acidic mixture of sulfuric acid and nitric acid. A series of steps involving oxidation and exfoliation result in small graphene plates with carboxyl groups at their edges. These are converted to acid chloride groups by treatment with thionyl chloride; next, they are converted to the corresponding graphene amide via treatment with octadecylamine. The resulting material (circular graphene layers of 5.3 angstrom thickness) is soluble in tetrahydrofuran, tetrachloromethane, and dichloroethane.

Photograph of single-layer graphene oxide undergoing high temperature chemical treatment, resulting in sheet folding and loss of carboxylic functionality, or through room temperature carbodiimide treatment, collapsing into star-like clusters.

الخصائص الحرارية

The near-room temperature thermal conductivity of graphene was recently measured to be between (4.84±0.44) ×103 to (5.30±0.48) ×103 Wm−1K−1. These measurements, made by a non-contact optical technique, are in excess of those measured for carbon nanotubes or diamond. It can be shown by using the Wiedemann-Franz law, that the thermal conduction is phonon-dominated.[65] However, for a gated graphene strip, an applied gate bias causing a Fermi energy shift much larger than kBT can cause the electronic contribution to increase and dominate over the phonon contribution at low temperatures. The ballistic thermal conductance of graphene is isotropic.[66]

Potential for this high conductivity can be seen by considering graphite, a 3D version of graphene that has basal plane thermal conductivity of over a 1000 W/mK (comparable to diamond). In graphite, the c-axis (out of plane) thermal conductivity is over a factor of ~100 smaller due to the weak binding forces between basal planes as well as the larger lattice spacing.[67] In addition, the ballistic thermal conductance of a graphene is shown to give the lower limit of the ballistic thermal conductances, per unit circumference, length of carbon nanotubes.[68]

Despite its 2-D nature, graphene has 3 acoustic phonon modes. The two in-plane modes (LA, TA) have a linear dispersion relation, whereas the out of plane mode (ZA) has a quadratic dispersion relation. Due to this, the T2 dependent thermal conductivity contribution of the linear modes is dominated at low temperatures by the T1.5 contribution of the out of plane mode.[68] Some graphene phonon bands display negative Grüneisen parameters.[69] At low temperatures (where most optical modes with positive Grüneisen parameters are still not excited) the contribution from the negative Grüneisen parameters will be dominant and thermal expansion coefficient (which is directly proportional to Grüneisen parameters) negative. The lowest negative Grüneisen parameters correspond to the lowest transversal acoustic ZA modes. Phonon frequencies for such modes increase with the in-plane lattice parameter since atoms in the layer upon stretching will be less free to move in the z direction. This is similar to the behaviour of a string which is being stretched will have vibrations of smaller amplitude and higher frequency. This phenomenon, named "membrane effect", was predicted by Lifshitz in 1952.[70]

الخصائص الميكانيكية

As of 2009, graphene appears the strongest material ever tested. Measurements have shown that graphene has a breaking strength 200 times greater than steel.[71] However, the process of separating it from graphite, where it occurs naturally, will require some technological development before it is economical enough to be used in industrial processes.[72]

Utilizing an atomic force microscope (AFM), the spring constant of suspended graphene sheets have been measured. Graphene sheets, held together by van der Waals forces, were suspended over silicon dioxide cavities where an AFM tip was probed to test its mechanical properties. Its spring constant was in the range 1-5 N/m and the Young's modulus was 0.5 TPa, which differs from that of the bulk graphite. These high values make graphene very strong and rigid. These intrinsic properties could lead to utilizing graphene for NEMS applications such as pressure sensors, and resonators.[73]

As is true of all materials, regions of graphene are subject to thermal and quantum fluctuations in relative displacement. Although the amplitude of these fluctuations is bounded in 3D structures (even in the limit of infinite size), the Mermin-Wagner theorem shows that the amplitude of long-wavelength fluctuations will grow logarithmically with the scale of a 2D structure, and would therefore be unbounded in structures of infinite size. Local deformation and elastic strain are negligibly affected by this long-range divergence in relative displacement. It is believed that a sufficiently large 2D structure, in the absence of applied lateral tension, will bend and crumple to form a fluctuating 3D structure. Researchers have observed ripples in suspended layers of graphene,[11] and it has been proposed that the ripples are caused by thermal fluctuations in the material. As a consequence of these dynamical deformations, it is debatable whether graphene is truly a 2D structure.[27][28][29]

تطبيقات مختملة

الكشف عن جزء واحد من غاز

Graphene makes an excellent sensor due to its 2D structure. The fact that its entire volume is exposed to its surrounding makes it very efficient to detect adsorbed molecules. Molecule detection is indirect: as a gas molecule adsorbs to the surface of graphene, the location of adsorption experiences a local change in electrical resistance. While this effect occurs in other materials, graphene is superior due to its high electrical conductivity (even when few carriers are present) and low noise which makes this change in resistance detectable.[45]

الشرائط النانوية من الگرافين

Graphene nanoribbons (GNRs) are essentially single layers of graphene that are cut in a particular pattern to give it certain electrical properties. Depending on how the un-bonded edges are configured, they can either be in a zigzag or armchair configuration. Calculations based on tight binding predict that zigzag GNRs are always metallic while armchairs can be either metallic or semiconducting, depending on their width. However, recent density functional theory calculations show that armchair nanoribbons are semiconducting with an energy gap scaling with the inverse of the GNR width.[74] Indeed, experimental results show that the energy gaps do increase with decreasing GNR width.[75] However, as of February 2008, no experimental results have measured the energy gap of a GNR and identified the exact edge structure. Zigzag nanoribbons are also semiconducting and present spin polarized edges. Their 2D structure, high electrical and thermal conductivity, and low noise also make GNRs a possible alternative to copper for integrated circuit interconnects. Some research is also being done to create quantum dots by changing the width of GNRs at select points along the ribbon, creating quantum confinement.[76]

Due to its high electronic quality, graphene has also attracted the interest of technologists who see them as a way of constructing ballistic transistors. Graphene exhibits a pronounced response to perpendicular external electric fields allowing one to built FETs (field-effect transistors). In their 2004 paper,[6] the Manchester group demonstrated FETs with a "rather modest" on-off ratio of ~30 at room temperature. In 2006, Georgia Tech researchers announced that they had successfully built an all-graphene planar FET with side gates.[77] Their devices showed changes of 2% at cryogenic temperatures. The first top-gated FET (on-off ratio of <2) was demonstrated by researchers of AMICA and RWTH Aachen University in 2007.[78] Graphene nanoribbons may prove generally capable of replacing silicon as a semiconductor in modern technology.[79]

أجهزة گرافينية جديدة

Facing the fact that current graphene transistors show a very poor on-off ratio, researchers are trying to find ways for improvement. In 2008 researchers of AMICA and University of Manchester demonstrated a new switching effect in graphene field-effect devices. This switching effect is based on a reversible chemical modification of the graphene layer and gives an on-off ratio of greater than six orders of magnitude. These reversible switches could potentially be applied to nonvolatile memories.[80]

In 2009 researchers at the Politecnico di Milano demonstrated four different types of logic gates, each comprised of a single graphene transistor.[81] In the same year, the Massachusetts Institute of Technology researchers built an experimental graphene chip known as a frequency multiplier. It is capable of taking an incoming electrical signal of a certain frequency and producing an output signal that is a multiple of that frequency.[82] Although these graphene chips open up a range of new applications their practical use is limited by a very small voltage gain (typically, the amplitude of the output signal is about 40 times less than that of the input signal). Moreover, none of these circuits was demonstrated to operate at frequencies higher than 25 kHz.

دوائر متكاملة

Graphene has the ideal properties to be an excellent component of دوائر متكاملة. Graphene has a high carrier mobility, as well as low noise allowing it to be utilized as the channel in a FET. The issue is that single sheets of graphene are hard to produce, and even harder to make on top of an appropriate substrate. Researchers are looking into methods of transferring single graphene sheets from their source of origin (mechanical exfoliation on SiO2 / Si or thermal graphitization of a SiC surface) onto a target substrate of interest.[83] In 2008, the smallest transistor so far, one atom thick, 10 atoms wide was made of graphene.[84] IBM announced in December 2008 that they have fabricated and characterized graphene transistors operating at GHz frequencies.[85] In May 2009 a team from Stanford University, University of Florida and Lawrence Livermore National Laboratory announced that they have created an n-type transistor, which means that both and n and p-type transistors have now been created with graphene.[86] At the same time, the researchers at the Politecnico di Milano demonstrated the first functional graphene integrated circuit – a complementary inverter consisting of one p- and one n-type graphene transistor.[87] However, this inverter also suffered from a very low voltage gain.

Transparent conducting electrodes

Graphene's high electrical conductivity and high optical transparency make it a candidate for transparent conducting electrodes, required for such applications as touchscreens, liquid crystal displays, organic photovoltaic cells, and Organic light-emitting diodes. In particular, graphene's mechanical strength and flexibility are advantageous compared to indium tin oxide, which is brittle, and graphene films may be deposited from solution over large areas.[88][89]

Large-area, continuous, transparent, and highly conducting few-layered graphene films were produced by chemical vapor deposition and used as anode for application in photovoltaic devices. A greatly improved power conversion efficiency (PCE) up to 1.71% was demonstrated, which is 55.2% of the PCE of a control device based on indium-tin-oxide.[90]

Ultracapacitors

Due to the incredibly high surface area to mass ratio of graphene, one potential application is in the conductive plates of ultracapacitors. It is believed that graphene could be used to produce ultracapacitors with a greater energy storage density than is currently available.[91]

أجهزة حيوية من الگرافين

Graphene's modifiable chemistry, large surface area, atomic thickness and molecularly-gatable structure make antibody-functionalized graphene sheets excellent candidates for mammalian and microbial detection and diagnosis devices.[92]

Energy of the electrons with wavenumber k in graphene, calculated in the Tight Binding-approximation. The unoccupied rsp. occupied states, coloured in blue-red rsp. yellow-green, touch each other without energy gap exactly at the above-mentioned six k-vectors.

أكثر تطبيقات الگرافين الحيوية طموحاً هو سلسلة الدنا بطريقة إلكترونية رخيصة وسريعة، بتكامل طبقات گرافين (بسمك 0.34 ن‌م) كأقطاب نانوية nanoelectrodes في ثقب نانوي nanopore[93] can solve one of the bottleneck issues of nanopore-based single-molecule DNA sequencing.


مضاد للجراثيم

وجدت أكاديمية العلوم الصينية أن أفرخ أكسيد الگرافين هي عالية الفعالية في قتل الجراثيم مثل Escherichia coli. This means graphene could be useful in applications such as hygiene products or packaging that will help keep food fresh for longer.[94]

نظرية نسبوية كاذبة

The electrical properties of graphene can be described by a conventional tight-binding model; in this model the energy of the electrons with wavenumber k is

'"`UNIQ--postMath-00000005-QINU`"' [35][37],

with the nearest-neighbor hopping energy γ0 ≈ 2.8 eV and the lattice constant a ≈ 2.46 Å. Conduction and valence band, respectively, correspond to the different signs in the above dispersion relation; they touch each other in six points, the "K-values". However, only two of these six points are independent, whereas the rest is equivalent by symmetry. In the vicinity of the K-points the energy depends linearly on the wavenumber, similar to a relativistic particle. Since an elementary cell of the lattice has a basis of two atoms, the wave function even has an effective 2-spinor structure. As a consequence, at low energies, even neglecting the true spin, the electrons can be described by an equation which is formally equivalent to the massless Dirac equation. Moreover, in the present case this pseudo-relativistic description is restricted to the chiral limit, i.e., to vanishing rest mass M0, which leads to interesting additional features:[37]

'"`UNIQ--postMath-00000006-QINU`"'

Here vF ~ 106 is the Fermi velocity in graphene which replaces the velocity of light in the Dirac theory; '"`UNIQ--postMath-00000007-QINU`"' is the vector of the Pauli matrices, '"`UNIQ--postMath-00000008-QINU`"' is the two-component wave function of the electrons, and E is their energy.[62]

تاريخ الاكتشاف التجريبي

The term graphene first appeared in 1987[95] in order to describe single sheets of graphite as one of the constituents of graphite intercalation compounds (GICs); conceptually a GIC is a crystalline salt of the intercalant and graphene. The term was also used in early descriptions of carbon nanotubes,[96] as well as for epitaxial graphene,[97] and polycyclic aromatic hydrocarbons.[98] However, none of these examples constitutes isolated, two-dimensional graphene.

Larger graphene molecules or sheets (so that they can be considered as true isolated 2D crystals) cannot be grown even in principle. An article in Physics Today reads:

"Fundamental forces place seemingly insurmountable barriers in the way of creating [2D crystals] ... Nascent 2D crystallites try to minimize their surface energy and inevitably morph into one of the rich variety of stable 3D structures that occur in soot.

But there is a way around the problem. Interactions with 3D structures stabilize 2D crystals during growth. So one can make 2D crystals sandwiched between or placed on top of the atomic planes of a bulk crystal. In that respect, graphene already exists within graphite ...

One can then hope to fool Nature and extract single-atom-thick crystallites at a low enough temperature that they remain in the quenched state prescribed by the original higher-temperature 3D growth."[99]

Single layers of graphite were previously (starting from the 1970s) grown epitaxially on top of other materials.[100] This "epitaxial graphene" consists of a single-atom-thick hexagonal lattice of sp2-bonded carbon atoms, as in free-standing graphene. However, there is significant charge transfer from the substrate to the epitaxial graphene, and, in some cases, hybridization between the d orbitals of the substrate atoms and π orbitals of graphene, which significantly alters the electronic structure of the epitaxial graphene.

Single layers of graphite were also observed by transmission electron microscopy within bulk materials (see section Occurrence), in particular inside soot obtained by chemical exfoliation.[10] There have also been a number of efforts to make very thin films of graphite by mechanical exfoliation (starting from 1990 and continuing until after 2004)[10] but nothing thinner than 50 to 100 layers was produced during these years.

The key advance in the science of graphene came when Andre Geim and Kostya Novoselov at Manchester University managed to extract single-atom-thick crystallites (graphene) from bulk graphite in 2004.[6] The Manchester researchers pulled out graphene layers from graphite and transferred them onto thin silicon dioxide on a silicon wafer in a process sometimes called micromechanical cleavage or, simply, the Scotch tape technique. The silicon dioxide electrically isolated the graphene, and was weakly interacting with the graphene, providing nearly charge-neutral graphene layers. The silicon beneath the silicon dioxide could be used as a "back gate" electrode to vary the charge density in the graphene layer over a wide range.

Geim has received several awards for "the discovery of graphene" including the prestigious EuroPhysics Prize (together with Novoselov) and the 2009 Körber Prize. Some of the awards describe his contributions probably more accurately, i.e. as the discovery of "two-dimensional atomic crystals" including isolated graphene (graphene inside graphitic structures and on top of metals and SiC was well known before; boron nitride is another example of one-atom-thick materials[12]). In 2008 and 2009, the Reuters (which also runs a bibliometric service Web of Science) tipped him as one of the front-runners for a Nobel prize in Physics[101] although the one in Chemistry maybe is more appropriate.

The micromechanical cleavage technique led directly to the first observation of the anomalous quantum Hall effect in graphene,[39][61] which provided direct evidence of the theoretically predicted pi Berry's phase of massless Dirac fermions in graphene. Another group widely credited for the kickoff of graphene research is that of Philip Kim and Yuanbo Zhang from Columbia University.

This theory was first explored by Philip R Wallace in 1947 as a starting point for understanding the electronic properties of more complex, 3D graphite. The emergent massless Dirac equation was first pointed out by Gordon W. Semenoff [37] and David P. DeVincenzo and Eugene J. Mele.[102] Semenoff emphasized the occurrence in a magnetic field of an electronic Landau level precisely at the Dirac point. This level is responsible for the anomalous integer quantum Hall effect.[39][60][61] Later, single graphene layers were also observed directly by electron microscopy.[11]

More recently, graphene samples prepared on nickel films, and on the silicon face of silicon carbide, have shown the anomalous quantum Hall effect directly in electrical measurements.[21][103][104] Graphitic layers on the carbon face of silicon carbide show a clear Dirac spectrum in angle-resolved photoemission experiments, and the anomalous quantum Hall effect is observed in cyclotron resonance and tunneling experiments.[105] Ironically, even though graphene on nickel and on silicon carbide have both existed in the laboratory for decades, it was graphene mechanically exfoliated on silicon dioxide that provided the first proof of the Dirac fermion nature of electrons in graphene.

انظر أيضاً

الهامش

  1. ^ NICK BILTON (2014-04-13). "Bend It, Charge It, Dunk It: Graphene, the Material of Tomorrow". النيويورك تايمز. 
  2. ^ Boehm, H.P.; Setton, R. and Stumpp, E. (1994). "Nomenclature and terminology of graphite intercalation compounds". Pure and Applied Chemistry. 66: 1893-1901. doi:10.1351/pac199466091893. 
  3. ^ Simpson, C. D.; et al. (2002). "Synthesis of a Giant 222 Carbon Graphite Sheet". Chemistry — A European Journal. 6: 1424. doi:10.1002/1521-3765(20020315)8:6<1424::AID-CHEM1424>3.0.CO;2-Z. 
  4. ^ Gall,N.R. ; Rut’kov, E.V.; Tontegode, A.Y. (1997). "Two Dimensional Graphite Films on Metals and Their Intercalation". International Journal of Modern Physics B. 11: 1865-1911. doi:10.1142/S0217979297000976. 
  5. ^ Gall,N.R. ; Rut’kov, E.V.; Tontegode, A.Y. (1995). "Influence of surface carbon on the formation of silicon-refractory metal interfaces". Thin Solid Films. 266: 229-233. doi:10.1016/0040-6090(95)06572-5. 
  6. ^ أ ب ت ث Novoselov, K. S.; et al. (2004). "Electric Field Effect in Atomically Thin Carbon Films" (PDF). Science. 306: 666. doi:10.1126/science.1102896. 
  7. ^ أ ب ت Ohta, T.; et al. (2007). "Interlayer Interaction and Electronic Screening in Multilayer Graphene Investigated with Angle-Resolved Photoemission Spectroscopy". Physical Review Letters. 98: 206802. doi:10.1103/PhysRevLett.98.206802. 
  8. ^ أ ب ت Bostwick, A.; et al. (2007). "Symmetry breaking in few layer graphene films". New Journal of Physics. 9: 385. doi:10.1088/1367-2630/9/10/385. 
  9. ^ أ ب Hass, J.; et al. (2008). "Why multilayer graphene on 4H-SiC(000(1)over-bar) behaves like a single sheet of graphene". Physical Review Letters. 100: 125504. doi:10.1103/PhysRevLett.100.125504. 
  10. ^ أ ب ت ث "Carbon Wonderland". Scientific American. April 2008. Retrieved 2009-05-05. .. bits of graphene are undoubtedly present in every pencil mark 
  11. ^ أ ب ت ث Meyer, J.; et al. (2007). "The structure of suspended graphene sheets" (PDF). Nature. 446 (7131): 60-63. doi:10.1038/nature05545. PMID 17330039. 
  12. ^ أ ب Novoselov, K.S.; et al. (2005). "Two-dimensional atomic crystals" (free download pdf). PNAS. 102 (30): 10451. doi:10.1073/pnas.0502848102. 
  13. ^ Sutter, P. (2009). "Epitaxial graphene: How silicon leaves the scene". Nature Materials. 8 (3): 171. doi:nmat2392 Check |doi= value (help). PMID 19229263. 
  14. ^ Zhou, S.Y.; et al. (2006). "First direct observation of Dirac fermions in graphite". Nature Physics. 2: 595–599. doi:10.1038/nphys393. 
  15. ^ Morozov, S.V.; et al. (2006). "Strong Suppression of Weak Localization in Graphene". Physical Review Letters. 97: 016801. doi:10.1103/PhysRevLett.97.016801. 
  16. ^ Berger, C.; et al. (2004). "Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics". Journal of Physical Chemistry B. 108: 19912–19916. doi:10.1021/jp040650f. 
  17. ^ Kedzierski, J.; et al. (2008). "Epitaxial Graphene Transistors on SiC Substrates". IEEE Transactions on Electron Devices. 55: 2078–2085. doi:10.1109/TED.2008.926593. 
  18. ^ Moon, J.S.; et al. (2009). "Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates". IEEE Electron Device Letters. 30: 650–652. doi:10.1109/LED.2009.2020699. 
  19. ^ "A smarter way to grow graphene". PhysOrg.com. May 2008. 
  20. ^ Pletikosić, I.; et al. (2009). "Dirac Cones and Minigaps for Graphene on Ir(111)". Physical Review Letters. 102: 056808. doi:10.1103/PhysRevLett.102.056808. 
  21. ^ أ ب خطأ لوا في وحدة:Citation/CS1 على السطر 3565: bad argument #1 to 'pairs' (table expected, got nil).
  22. ^ "Researchers discover method for mass production of nanomaterial graphene". PhysOrg.com. Nov 2008. 
  23. ^ Choucair, M. (2008). "Gram-scale production of graphene based on solvothermal synthesis and sonication". Nature Nanotechnology. 4 (1): 30–3. doi:10.1038/nnano.2008.365. PMID 19119279. 
  24. ^ Brumfiel, G. (2009). "Nanotubes cut to ribbons New techniques open up carbon tubes to create ribbons". Nature. doi:10.1038/news.2009.367. 
  25. ^ Kosynkin, D. V.; et al. (2009). "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons". Nature. 458 (7240): 872. doi:10.1038/nature07872. PMID 19370030. 
  26. ^ Liying Jiao, Li Zhang, Xinran Wang, Georgi Diankov & Hongjie Dai (2009). "Narrow graphene nanoribbons from carbon nanotubes". Nature. 458 (7240): 877. doi:10.1038/nature07919. PMID 19370031. 
  27. ^ أ ب Carlsson, J. M. (2007). "Graphene: Buckle or break". Nature Materials. 6 (11): 801. doi:10.1038/nmat2051. PMID 17972931. 
  28. ^ أ ب Fasolino, A., Los, J. H., & Katsnelson, M. I. (2007). "Intrinsic ripples in graphene". Nature Materials. 6 (11): 858. doi:10.1038/nmat2011. PMID 17891144. 
  29. ^ أ ب ت ث ج ح Geim, A. K. and Novoselov, K. S. (2007). "The rise of graphene" (PDF). Nature Materials. 6 (3): 183-191. doi:10.1038/nmat1849. PMID 17330084. 
  30. ^ أ ب ت خطأ لوا في وحدة:Citation/CS1 على السطر 3565: bad argument #1 to 'pairs' (table expected, got nil).
  31. ^ خطأ لوا في وحدة:Citation/CS1 على السطر 3565: bad argument #1 to 'pairs' (table expected, got nil).
  32. ^ Kasuya, D.; Yudasaka, M.; Takahashi, K.; Kokai, F. ; Iijima, S. (2002). "Selective Production of Single-Wall Carbon Nanohorn Aggregates and Their Formation Mechanism". J. Phys. Chem. B. 106: 4947. doi:10.1021/jp020387n. 
  33. ^ Bernatowicz, T. J.; et al. (1996). "Constraints on stellar grain formation from presolar graphite in the Murchison meteorite". Astrophysical Journal. 472: 760-782. doi:10.1086/178105. 
  34. ^ Fraundorf, P. and Wackenhut, M. (2002). "The core structure of presolar graphite onions". Astrophysical Journal Letters. 578: L153-156 (astro-ph/0110585 arxiv1,cond-mat/0606093 arxiv2). doi:10.1086/344633. 
  35. ^ أ ب Wallace, P. R. (1947). "The Band Theory of Graphite". Physical Review. 71: 622. doi:10.1103/PhysRev.71.622. 
  36. ^ أ ب ت ث Charlier, J.-C.; Eklund, P.C.; Zhu, J. and Ferrari, A.C. (2008). "Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes". from Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Ed. A. Jorio, G. Dresselhaus, and M.S. Dresselhaus. Berlin/Heidelberg: Springer-Verlag. 
  37. ^ أ ب ت ث ج ح Semenoff, G. W. (1984). "Condensed-Matter Simulation of a Three-Dimensional Anomaly". Physical Review Letters. 53: 5449. doi:10.1103/PhysRevLett.53.2449. 
  38. ^ أ ب Avouris, P., Chen, Z., and Perebeinos, V. (2007). "Carbon-based electronics". Nature Nanotechnology. 2 (10): 605. doi:10.1038/nnano.2007.300. PMID 18654384. 
  39. ^ أ ب ت ث ج ح Novoselov, K. S.; et al. (2005). "Two-dimensional gas of massless Dirac fermions in graphene". Nature. 438 (7065): 197-200. doi:10.1038/nature04233. PMID 16281030. 
  40. ^ Morozov, S.V.; et al. (2008). "Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer". Phys. Rev. Lett. 100: 016602. doi:10.1103/PhysRevLett.100.016602. 
  41. ^ أ ب ت Chen, J. H.; et al. (2008). "Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2". Nature Nanotechnology. 3 (4): 206. doi:10.1038/nnano.2008.58. PMID 18654504. 
  42. ^ Akturk, A. and Goldsman, N. (2008). "Electron transport and full-band electron-phonon interactions in graphene". Journal of Applied Physics. 103: 053702. doi:10.1063/1.2890147. 
  43. ^ Physicists Show Electrons Can Travel More Than 100 Times Faster in Graphene
  44. ^ أ ب ت Chen, J. H.; et al. (2008). "Charged Impurity Scattering in Graphene". Nature Physics. 4: 377 - 381. doi:10.1038/nphys935. 
  45. ^ أ ب ت Schedin, F.; et al. (2007). "Detection of individual gas molecules adsorbed on graphene". Nature Mater. 6 (9): 652-655. doi:10.1038/nmat1967. PMID 17660825. 
  46. ^ Adam, S.; et al. (2007). "A self-consistent theory for graphene transport" (free-download pdf). Proc. Nat. Acad. Sci. USA. 104 (47): 18392 (arxiv). doi:10.1073/pnas.0704772104. PMC 2141788Freely accessible. PMID 18003926. 
  47. ^ Jiannis K. Pachos (2009). "Manifestations of topological effects in graphene" (free-download pdf). Contemporary Physics. 50: 375. doi:10.1080/00107510802650507. 
  48. ^ Fractionalization of charge and statistics in graphene and related structures, M. Franz, University of British Columbia, January 5, 2008
  49. ^ Kuzmenko, A. B.; van Heumen, E.; Carbone, F.; van der Marel, D. (2008). "Universal infrared conductance of graphite". Phys Rev Lett. 100: 117401. doi:10.1103/PhysRevLett.100.117401. 
  50. ^ Nair, R. R.; et al. (2008). "Fine Structure Constant Defines Visual Transparency of Graphene" (PDF). Science. 320 (5881): 1308. doi:10.1126/science.1156965. PMID 18388259.  [1]
  51. ^ "Graphene Gazing Gives Glimpse Of Foundations Of Universe". ScienceDaily. 2008-04-04. Retrieved 2008-04-06. 
  52. ^ Zhang, Y.; et al. (11 June 2009). "Direct observation of a widely tunable bandgap in bilayer graphene". Nature. 459 (7248): 820-823. doi:10.1038/nature08105. PMID 19516337. 
  53. ^ Junfeng Liu, A. R. Wright, Chao Zhang, and Zhongshui Ma (29 July 2008). "Strong terahertz conductance of graphene nanoribbons under a magnetic field". Appl Phys Lett. 93: 041106-041110. doi:10.1063/1.2964093. 
  54. ^ Qiaoliang Bao, Han Zhang, Yu Wang, Zhenhua Ni, Yongli Yan, Ze Xiang Shen, Kian Ping Loh,and Ding Yuan Tang, Advanced Functional Materials,"Atomic layer graphene as saturable absorber for ultrafast pulsed lasers "http://www3.ntu.edu.sg/home2006/zhan0174/AFM.pdf
  55. ^ Zhang, H.; et al. "Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene" (free download pdf). Optics Express. 17: P17630. 
  56. ^ Zhang, H.; et al. "Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker" (PDF). Applied Physics Letters. 95: P141103. 
  57. ^ أ ب خطأ لوا في وحدة:Citation/CS1 على السطر 3565: bad argument #1 to 'pairs' (table expected, got nil).
  58. ^ أ ب خطأ لوا في وحدة:Citation/CS1 على السطر 3565: bad argument #1 to 'pairs' (table expected, got nil).
  59. ^ خطأ لوا في وحدة:Citation/CS1 على السطر 3565: bad argument #1 to 'pairs' (table expected, got nil).
  60. ^ أ ب Gusynin, V. P. and Sharapov, S. G. (2005). "Unconventional Integer Quantum Hall Effect in Graphene". Physical Review Letters. 95: 146801. doi:10.1103/PhysRevLett.95.146801. 
  61. ^ أ ب ت Zhang, Y., Tan, Y. W., Stormer, H. L., and Kim, P. (2005). "Experimental observation of the quantum Hall effect and Berry’s phase in graphene". Nature. 438 (7065): 201-204. doi:10.1038/nature04235. PMID 16281031. 
  62. ^ أ ب A Castro Neto; et al. (2009). "The electronic properties of graphene" (PDF). Rev Mod Phys. 81: 109. 
  63. ^ "Graphene Oxide Paper". Northwestern University. Retrieved 2009-05-05. 
  64. ^ Sandip Niyogi, Elena Bekyarova, Mikhail E. Itkis, Jared L. McWilliams, Mark A. Hamon, and Robert C. Haddon (2006). "Solution Properties of Graphite and Graphene". J. Am. Chem. Soc. 128 (24): 7720–7721. doi:10.1021/ja060680r. PMID 16771469. 
  65. ^ Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrahn, D., Miao, F., and Lau, C.N. (2008). "Superior Thermal Conductivity of Single-Layer Graphene". Nano Letters ASAP. 8 (3): 902–7. doi:10.1021/nl0731872. PMID 18284217. 
  66. ^ Saito, K., Nakamura, J., and Natori, A. (2007). "Ballistic thermal conductance of a graphene sheet". Physical Review B. 76: 115409. doi:10.1103/PhysRevB.76.115409. 
  67. ^ Delhaes, P. (2001). Graphite and Precursors. CRC Press. ISBN 9056992287. 
  68. ^ أ ب Mingo N., Broido, D.A. (2005). "Carbon Nanotube Ballistic Thermal Conductance and Its Limits". Physical Review Letters. 95: 096105. doi:10.1103/PhysRevLett.95.096105. 
  69. ^ Mounet, N. and Marzari, N. (2005). "First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives". Physical Review B. 71: 205214. doi:10.1103/PhysRevB.71.205214. 
  70. ^ Lifshitz, I.M. (1952). Journal of Experimental and Theoretical Physics (in Russian). 22: 475.  Missing or empty |title= (help)
  71. ^ Lee, C.; et al. (2008). "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene". Science. 321 (5887): 385. doi:10.1126/science.1157996. PMID 18635798. Lay summary. 
  72. ^ Sanderson, Bill (2008-08-25). "Toughest Stuff Known to Man : Discovery Opens Door to Space Elevator". nypost.com. Retrieved 2008-10-09. 
  73. ^ Frank, I. W., Tanenbaum, D. M., Van Der Zande, A.M., and McEuen, P. L. (2007). "Mechanical properties of suspended graphene sheets" (free download pdf). J. Vac. Sci. Technol. B. 25: 2558-2561. doi:10.1116/1.2789446. 
  74. ^ Barone, V., Hod, O., and Scuseria, G. E. (2006). "Electronic Structure and Stability of Semiconducting Graphene Nanoribbons". Nano Lett. 6 (12): 2748. doi:10.1021/nl0617033. PMID 17163699. 
  75. ^ Han., M.Y., Özyilmaz, B., Zhang, Y., and Kim, P. (2007). "Energy Band-Gap Engineering of Graphene Nanoribbons". Phys. Rev. Lett. 98: 206805. doi:10.1103/PhysRevLett.98.206805. 
  76. ^ Wang, Z. F., Shi, Q. W., Li, Q., Wang, X., Hou, J. G., Zheng, H.; et al. (2007). "Z-shaped graphene nanoribbon quantum dot device". Applied Physics Letters. 91: 053109. doi:10.1063/1.2761266. 
  77. ^ Carbon-Based Electronics: Researchers Develop Foundation for Circuitry and Devices Based on Graphite March 14, 2006
  78. ^ Lemme, M. C. et al. (2007)). "A graphene field-effect device". IEEE Electron Device Letters. 28: 282. doi:10.1109/LED.2007.891668.  Check date values in: |date= (help)
  79. ^ Bullis, K. (2008-01-28). "Graphene Transistors". Cambridge: MIT Technology Review, Inc. Retrieved 2008-02-18. 
  80. ^ Echtermeyer, Tim. J. et al. (2008). "Nonvolatile Switching in Graphene Field-Effect Devices". IEEE Electron Device Letters. 29: 952. doi:10.1109/LED.2008.2001179. 
  81. ^ Sordan, R.; Traversi, F.; Russo, V. (2009). "Logic gates with a single graphene transistor". Appl. Phys. Lett. 94: 073305. doi:10.1063/1.3079663. 
  82. ^ Wang, H.; Nezich, D.; Kong, J.; Palacios, T. (2009). "Graphene Frequency Multipliers". IEEE Electr. Device. L. 30: 547. doi:10.1109/LED.2009.2016443. Lay summary. 
  83. ^ Chen, J., Ishigami, M., Jang, C., Hines, D. R., Fuhrer, M. S., and Williams, E. D. (2007). "Printed graphene circuits.". Advanced Materials. 19: 3623-3627. doi:10.1002/adma.200701059. 
  84. ^ Ponomarenko, L. A.; et al. (2008). "Chaotic Dirac Billiard in Graphene Quantum Dots". Science. 320 (5874): 356. doi:10.1126/science.1154663. PMID 18420930. Lay summary. 
  85. ^ "Graphene transistors clocked at 26 GHz Arxiv article". Arxivblog.com. 2008-12-11. Retrieved 2009-08-15. 
  86. ^ Wang, X.; Li, X.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H.; Guo, J.; Dai, H. (2009). "N-Doping of Graphene Through Electrothermal Reactions with Ammonia". Science. 324: 768. doi:10.1126/science.1170335. Lay summary. 
  87. ^ Traversi, F.; Russo, V.; Sordan, R. (2009). "Integrated complementary graphene inverter". Appl. Phys. Lett. 94: 223312. doi:10.1063/1.3148342. Lay summary. 
  88. ^ خطأ لوا في وحدة:Citation/CS1 على السطر 3565: bad argument #1 to 'pairs' (table expected, got nil).
  89. ^ Eda G, Fanchini G, Chhowalla M (2008). "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material". Nat Nanotechnol. 3 (5): 270–4. doi:10.1038/nnano.2008.83. PMID 18654522. 
  90. ^ Wang, Yu; et al. (2009). "Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices". Applied Physics Letters. 95: 063302. doi:10.1063/1.3204698. 
  91. ^ خطأ لوا في وحدة:Citation/CS1 على السطر 3565: bad argument #1 to 'pairs' (table expected, got nil).
  92. ^ خطأ لوا في وحدة:Citation/CS1 على السطر 3565: bad argument #1 to 'pairs' (table expected, got nil).
  93. ^ خطأ لوا في وحدة:Citation/CS1 على السطر 3565: bad argument #1 to 'pairs' (table expected, got nil).
  94. ^ Computer supermaterial could stop your shoes smelling 01 August 2010
  95. ^ Mouras, S.; et al. (1987). "Synthesis of first stage graphite intercalation compounds with fluorides". Revue de Chimie Minerale. 24: 572. 
  96. ^ Saito, R.; et al. (1992). "Electronic structure of graphene tubules based on C60". Phys. Rev. B. 46: 1804. doi:10.1103/PhysRevB.46.1804. 
  97. ^ Forbeaux, I.; et al. (1998). "Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure". Phys. Rev. B. 58: 16396. doi:10.1103/PhysRevB.58.16396. 
  98. ^ Wang, S.; et al. (2000). "A new carbonaceous material with large capacity and high efficiency for rechargeable Li-ion batteries". Journal of the Electrochemical Society. 147: 2498. doi:10.1149/1.1393559. 
  99. ^ Geim, A. K. & MacDonald, A. H. (2007). "Graphene: Exploring carbon flatland" (PDF). Physics Today. 60: 35-41. doi:10.1063/1.2774096. 
  100. ^ Oshima, C. and Nagashima, A. (1997). "Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces". J. Phys.: Condens. Matter. 9: 1. doi:10.1088/0953-8984/9/1/004. 
  101. ^ Nobel glory for graphene http://science.thomsonreuters.com/press/2008/8481910/
  102. ^ DiVincenzo, D. P. and Mele, E. J. (1984). "Self-Consistent Effective Mass Theory for Intralayer Screening in Graphite Intercalation Compounds". Physical Review B. 295: 1685. doi:10.1103/PhysRevB.29.1685. 
  103. ^ Johannes Jobst, Daniel Waldmann, Florian Speck, Roland Hirner, Duncan K. Maude, Thomas Seyller, Heiko B. Weber. "How Graphene-like is Epitaxial Graphene? Quantum Oscillations and Quantum Hall Effect". ArXiv.org. 
  104. ^ T. Shen, J.J. Gu, M. Xu, Y.Q. Wu, M.L. Bolen, M.A. Capano, L.W. Engel, P.D. Ye. "Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001)". ArXiv.org. 
  105. ^ Michael S. Fuhrer (2009). "A physicist peels back the layers of excitement about graphene". Nature. 459 (7250): 1037. doi:10.1038/4591037e. PMID 19553953. 

وصلات خارجية