سداسي

Regular hexagon
Regular polygon 6 annotated.svg
A regular hexagon
النوعمضلع منتظم
الأضلاع والرؤوس{{{p6 جانب}}}
رمز شلفلي{{{p6-شلفلي}}}
مخططات كوكستر-دنكنCDel node 1.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node 1.png
مجموعة التماثلDihedral (D6), order 2×6
الزاوية الداخلية (الدرجات)120°
الخصائصConvex, cyclic, equilateral, isogonal, isotoxal

السداسي هو مضلع مكون من ستة أضلاع وستة زوايا.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

السداسي المنتظم

الشكل سداسي منتظم.
سداسي منتظم مع زواياه.
خطوات إنشاء المنتظم.
  • في الشكل السداسي المنتظم (مسدس) تبلغ قيمة الزاوية الداخلية لكل ضلعين متجاورين 120 درجة، ومجموع زواياه 720 درجة.


A step-by-step animation of the construction of a regular hexagon using compass and straightedge, given by Euclid's Elements, Book IV, Proposition 15: this is possible as 6 2 × 3, a product of a power of two and distinct Fermat primes.
When the side length AB is given, then you draw around the point A and around the point B a circular arc. The intersection M is the center of the circumscribed circle. Transfer the line segment AB four times on the circumscribed circle and connect the corner points.


المتغيرات

Regular hexagon 1.svg
  • يمكن حساب مساحة الشكل السداسي المنتظم عندما يكون طول كل ضلع = بالمعادلة التالية:


For any regular polygon, the area can also be expressed in terms of the apothem a and the perimeter p. For the regular hexagon these are given by a = r, and p, so

The regular hexagon fills the fraction of its circumscribed circle.

If a regular hexagon has successive vertices A, B, C, D, E, F and if P is any point on the circumcircle between B and C, then PE + PF = PA + PB + PC + PD.

It follows from the ratio of circumradius to inradius that the height-to-width ratio of a regular hexagon is 1:1.1547005; that is, a hexagon with a long diagonal of 1.0000000 will have a distance of 0.8660254 between parallel sides.


التماثل

The six lines of reflection of a regular hexagon, with Dih6 or r12 symmetry, order 12.
The dihedral symmetries are divided depending on whether they pass through vertices (d for diagonal) or edges (p for perpendiculars) Cyclic symmetries in the middle column are labeled as g for their central gyration orders. Full symmetry of the regular form is r12 and no symmetry is labeled a1.

The regular hexagon has Dih6 symmetry, order 12. There are 3 dihedral subgroups: Dih3, Dih2, and Dih1, and 4 cyclic subgroups: Z6, Z3, Z2, and Z1.

These symmetries express 9 distinct symmetries of a regular hexagon. John Conway labels these by a letter and group order.[1] r12 is full symmetry, and a1 is no symmetry. p6, an isogonal hexagon constructed by three mirrors can alternate long and short edges, and d6, an isotoxal hexagon constructed with equal edge lengths, but vertices alternating two different internal angles. These two forms are duals of each other and have half the symmetry order of the regular hexagon. The i4 forms are regular hexagons flattened or stretched along one symmetry direction. It can be seen as an elongated rhombus, while d2 and p2 can be seen as horizontally and vertically elongated kites. g2 hexagons, with opposite sides parallel are also called hexagonal parallelogons.

Each subgroup symmetry allows one or more degrees of freedom for irregular forms. Only the g6 subgroup has no degrees of freedom but can seen as directed edges.

Hexagons of symmetry g2, i4, and r12, as parallelogons can tessellate the Euclidean plane by translation. Other hexagon shapes can tile the plane with different orientations.

p6m (*632) cmm (2*22) p2 (2222) p31m (3*3) pmg (22*) pg (××)
Isohedral tiling p6-13.png
r12
Isohedral tiling p6-12.png
i4
Isohedral tiling p6-7.png
g2
Isohedral tiling p6-11.png
d2
Isohedral tiling p6-10.png
d2
Isohedral tiling p6-9.png
p2
Isohedral tiling p6-1.png
a1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

مجموعات A2 و G2

Root system A2.svg
A2 group roots
Dyn-node n1.pngDyn-3.pngDyn-node n2.png
Root system G2.svg
G2 group roots
Dyn2-nodeg n1.pngDyn2-6a.pngDyn2-node n2.png

The 6 roots of the simple Lie group A2, represented by a Dynkin diagram Dyn-node n1.pngDyn-3.pngDyn-node n2.png, are in a regular hexagonal pattern. The two simple roots have a 120° angle between them.

The 12 roots of the Exceptional Lie group G2, represented by a Dynkin diagram Dyn2-nodeg n1.pngDyn2-6a.pngDyn2-node n2.png are also in a hexagonal pattern. The two simple roots of two lengths have a 150° angle between them.


تشريح

6-cube projection 10 rhomb dissection
6-cube t0 A5.svg 6-gon rhombic dissection-size2.svg 6-gon rhombic dissection2-size2.svg

Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms.[2] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. This decomposition of a regular hexagon is based on a Petrie polygon projection of a cube, with 3 of 6 square faces. Other parallelogons and projective directions of the cube are dissected within rectangular cuboids.

تشريح مسدسات إلى 3 معيّنات ومتوازيات أضلاع
2D معيّنات متوازيات أضلاع
Hexagon dissection.svg Cube-skew-orthogonal-skew-solid.png Cuboid diagonal-orthogonal-solid.png Cuboid skew-orthogonal-solid.png
منتظمة {6} Hexagonal parallelogons
3D أوجه مربعة أوجه مستطيلة
3-cube graph.svg Cube-skew-orthogonal-skew-frame.png Cuboid diagonal-orthogonal-frame.png Cuboid skew-orthogonal-frame.png
مكعب Rectangular cuboid


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

مضلعات وتبليطات متعلقة

A regular hexagon has Schläfli symbol {6}. A regular hexagon is a part of the regular hexagonal tiling, {6,3}, with 3 hexagonal around each vertex.

A regular hexagon can also be created as a truncated equilateral triangle, with Schläfli symbol t{3}. Seen with two types (colors) of edges, this form only has D3 symmetry.

A truncated hexagon, t{6}, is a dodecagon, {12}, alternating 2 types (colors) of edges. An alternated hexagon, h{6}, is a equilateral triangle, {3}. A regular hexagon can be stellated with equilateral triangles on its edges, creating a hexagram. A regular hexagon can be dissected into 6 equilateral triangles by adding a center point. This pattern repeats within the regular triangular tiling.

A regular hexagon can be extended into a regular dodecagon by adding alternating squares and equilateral triangles around it. This pattern repeats within the rhombitrihexagonal tiling.

Regular polygon 6 annotated.svg Truncated triangle.svg Regular truncation 3 1000.svg Regular truncation 3 1.5.svg Regular truncation 3 0.55.svg Hexagram.svg Regular polygon 12 annotated.svg Regular polygon 3 annotated.svg
Regular
{6}
Truncated
t{3} = {6}
Hypertruncated triangles Stellated
Star figure 2{3}
Truncated
t{6} = {12}
Alternated
h{6} = {3}
Crossed-square hexagon.png Medial triambic icosahedron face.png Great triambic icosahedron face.png 3-cube t0.svg Hexagonal cupola flat.png Cube petrie polygon sideview.png
Crossed
hexagon
A concave hexagon A self-intersecting hexagon (star polygon) Dissected {6} Extended
Central {6} in {12}
A skew hexagon, within cube

There are 6 self-crossing hexagons with the vertex arrangement of the regular hexagon:

Self-intersecting hexagons with regular vertices
Dih2 Dih1 Dih3
Crossed hexagon1.svg
Figure-eight
Crossed hexagon2.svg
Center-flip
Crossed hexagon3.svg
Unicursal
Crossed hexagon4.svg
Fish-tail
Crossed hexagon5.svg
Double-tail
Crossed hexagon6.svg
Triple-tail

بنى مسدسية

Giant's Causeway closeup

From bees' honeycombs to the Giant's Causeway, hexagonal patterns are prevalent in nature due to their efficiency. In a hexagonal grid each line is as short as it can possibly be if a large area is to be filled with the fewest hexagons. This means that honeycombs require less wax to construct and gain lots of strength under compression.

Irregular hexagons with parallel opposite edges are called parallelogons and can also tile the plane by translation. In three dimensions, hexagonal prisms with parallel opposite faces are called parallelohedrons and these can tessellate 3-space by translation.

Hexagonal prism tessellations
Form Hexagonal tiling Hexagonal prismatic honeycomb
Regular Uniform tiling 63-t0.png Hexagonal prismatic honeycomb.png
Parallelogonal Isohedral tiling p6-7.png Skew hexagonal prism honeycomb.png

Tesselations by hexagons

In addition to the regular hexagon, which determines a unique tessellation of the plane, any irregular hexagon which satisfies the Conway criterion will tile the plane.

مسدس مرسوم في قطع مخروطي

Pascal's theorem (also known as the "Hexagrammum Mysticum Theorem") states that if an arbitrary hexagon is inscribed in any conic section, and pairs of opposite sides are extended until they meet, the three intersection points will lie on a straight line, the "Pascal line" of that configuration.

مسدس دوري

The Lemoine hexagon is a cyclic hexagon (one inscribed in a circle) with vertices given by the six intersections of the edges of a triangle and the three lines that are parallel to the edges that pass through its symmedian point.

If the successive sides of a cyclic hexagon are a, b, c, d, e, f, then the three main diagonals intersect in a single point if and only if ace = bdf.[3]

If, for each side of a cyclic hexagon, the adjacent sides are extended to their intersection, forming a triangle exterior to the given side, then the segments connecting the circumcenters of opposite triangles are concurrent.[4]

If a hexagon has vertices on the circumcircle of an acute triangle at the six points (including three triangle vertices) where the extended altitudes of the triangle meet the circumcircle, then the area of the hexagon is twice the area of the triangle.[5]:p. 179

مسدس مماس لقطع مخروطي

Let ABCDEF be a hexagon formed by six tangent lines of a conic section. Then Brianchon's theorem states that the three main diagonals AD, BE, and CF intersect at a single point.

In a hexagon that is tangential to a circle and that has consecutive sides a, b, c, d, e, and f,[6]

مثلثات متساوية الأضلاع على جوانب مسدس عشوائي

Equilateral triangles on the sides of an arbitrary hexagon

If an equilateral triangle is constructed externally on each side of any hexagon, then the midpoints of the segments connecting the centroids of opposite triangles form another equilateral triangle.[7]:Thm. 1

المسدس المنحرف

A regular skew hexagon seen as edges (black) of a triangular antiprism, symmetry D3d, [2+,6], (2*3), order 12.

A skew hexagon is a skew polygon with 6 vertices and edges but not existing on the same plane. The interior of such an hexagon is not generally defined. A skew zig-zag hexagon has vertices alternating between two parallel planes.

A regular skew hexagon is vertex-transitive with equal edge lengths. In 3-dimensions it will be a zig-zag skew hexagon and can be seen in the vertices and side edges of a triangular antiprism with the same D3d, [2+,6] symmetry, order 12.

The cube and octahedron (same as triangular antiprism) have regular skew hexagons as petrie polygons.

Skew hexagons on 3-fold axes
Cube petrie.png
Cube
Octahedron petrie.png
Octahedron

مضلعات پتري

The regular skew hexagon is the Petrie polygon for these higher dimensional regular, uniform and dual polyhedra and polytopes, shown in these skew orthogonal projections:

4D 5D
3-3 duoprism ortho-Dih3.png
3-3 duoprism
3-3 duopyramid ortho.png
3-3 duopyramid
5-simplex t0.svg
5-simplex

مسدس متساوي الأضلاح مقعر

A principal diagonal of a hexagon is a diagonal which divides the hexagon into quadrilaterals. In any convex equilateral hexagon (one with all sides equal) with common side a, there exists[8]:p.184,#286.3 a principal diagonal d1 such that

and a principal diagonal d2 such that

متعددات الأوجه بمسدسات

There is no Platonic solid made of only regular hexagons, because the hexagons tessellate, not allowing the result to "fold up". The Archimedean solids with some hexagonal faces are the truncated tetrahedron, truncated octahedron, truncated icosahedron (of soccer ball and fullerene fame), truncated cuboctahedron and the truncated icosidodecahedron. These hexagons can be considered truncated triangles, with Coxeter diagrams of the form CDel node 1.pngCDel 3.pngCDel node 1.pngCDel p.pngCDel node.png and CDel node 1.pngCDel 3.pngCDel node 1.pngCDel p.pngCDel node 1.png.

توجد متعددات أوجه تماثلية أخرى بمسدسات ممطوطة أو مفلطحة، مثل تلك متعدد أوجه گولدبرگ G(2,0):

There are also 9 Johnson solids with regular hexagons:

معرض المسدسات الطبيعية والاصطناعية

انظر أيضاً

المراجع

  1. ^ John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN 978-1-56881-220-5 (Chapter 20, Generalized Schaefli symbols, Types of symmetry of a polygon pp. 275-278)
  2. ^ Coxeter, Mathematical recreations and Essays, Thirteenth edition, p.141
  3. ^ Cartensen, Jens, "About hexagons", Mathematical Spectrum 33(2) (2000–2001), 37–40.
  4. ^ Dergiades, Nikolaos (2014). "Dao's theorem on six circumcenters associated with a cyclic hexagon". Forum Geometricorum. 14: 243–246.
  5. ^ Johnson, Roger A., Advanced Euclidean Geometry, Dover Publications, 2007 (orig. 1960).
  6. ^ Gutierrez, Antonio, "Hexagon, Inscribed Circle, Tangent, Semiperimeter", [1], Accessed 2012-04-17.
  7. ^ Dao Thanh Oai (2015). "Equilateral triangles and Kiepert perspectors in complex numbers". Forum Geometricorum. 15: 105–114.
  8. ^ Inequalities proposed in “Crux Mathematicorum, [2].

وصلات خارجية

كثيرات الجوانب المعتادة والمنتظمة المحدبة الأساسية في الأبعاد 2–10
العائلة An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
مضلع منتظم مثلث مربع p-gon مسدس مخمس
متعدد السطوح المنتظم رباعي الأسطح Octahedronمكعب Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
المواضيع: Polytope familiesRegular polytopeList of regular polytopes and compounds