الخط الزمني للمستقبل البعيد

A dark gray and red sphere representing the Earth lies against a black background to the right of an orange circular object representing the Sun
An artist's concept of a charred Earth seven billion سنين من الآن, after the Sun has entered the red giant phase

بينما يستحيل أن تكون التوقعات العلمية للمستقبل مؤكدة،[1] فإن الفهم الحالي في مختلف التخصصات يتيح توقع أحداث المستقبل البعيد, if only in the broadest strokes. These fields include astrophysics, which has revealed how planets and stars form, interact, and die; particle physics, which has revealed how matter behaves at the smallest scales; evolutionary biology, which predicts how life will evolve over time; and plate tectonics, which shows how continents shift over millennia.

All projections of the future of the Earth, the Solar System, and the Universe must account for the second law of thermodynamics, which states that entropy, or a loss of the energy available to do work, must increase over time.[2] Stars eventually must exhaust their supply of hydrogen fuel and burn out. Close encounters gravitationally fling planets from their star systems, and star systems from galaxies.[3]

Eventually, matter itself is expected to come under the influence of radioactive decay, as even the most stable materials break apart into subatomic particles.[4] Current data suggest that the universe has a flat geometry (or very close to flat), and thus, will not collapse in on itself after a finite time,[5] and the infinite future potentially allows for the occurrence of a number of massively improbable events, such as the formation of a Boltzmann brain.[6]

The timelines displayed here cover events from roughly eight thousand سنين من الآن[أ] to the furthest reaches of future time. A number of alternate future events are listed to account for questions still unresolved, such as whether humans will become extinct, whether protons decay, or whether Earth will survive the Sun's expansion into a red giant.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

المفتاح

الفلك والفيزياء الفلكية الفلك والفيزياء الفلكية
الجيولوجيا وعلم الكواكب الجيولوجيا وعلم الكواكب
علم الأحياء علم الأحياء
فيزياء الجسيمات فيزياء الجسيمات
الرياضيات الرياضيات
التكنولوجيا والثقافة التكنولوجيا والثقافة


مستقبل الأرض والمجموعة الشمسية والكون

Key.svg سنين من الآن الحدث
الجيولوجيا وعلم الكواكب 10,000 If a failure of the Wilkes Subglacial Basin "ice plug" in the next few centuries were to endanger the East Antarctic Ice Sheet, it will take up to this long to melt completely. Sea levels would rise 3 to 4 meters.[7] (One of the potential long-term effects of global warming, this is separate from the shorter term threat of the West Antarctic Ice Sheet).
الفلك والفيزياء الفلكية 10,000[ب] The red supergiant star Antares will likely have exploded in a supernova. The explosion is expected to be easily visible in daylight.[8]
الجيولوجيا وعلم الكواكب 25,000 The northern Martian polar ice cap could recede as Mars reaches a warming peak of the northern hemisphere during the ~50,000 year perihelion precession aspect of its Milankovitch cycle.[9][10]
الفلك والفيزياء الفلكية 36,000 The small red dwarf Ross 248 will pass within 3.024 light years of Earth, becoming the closest star to the Sun.[11] It will recede after about 8,000 years, making first Alpha Centauri again and then Gliese 445 the nearest stars[11] (see timeline).
الجيولوجيا وعلم الكواكب 50,000 According to Berger and Loutre, the current interglacial period ends[12] sending the Earth back into a glacial period of the current ice age, regardless of the effects of anthropogenic global warming.

Niagara Falls will have eroded away the remaining 32 km to Lake Erie, and ceased to exist.[13]

The many glacial lakes of the Canadian Shield will have been erased by post-glacial rebound and erosion.[14]

الفلك والفيزياء الفلكية 50,000 The length of the day used for astronomical timekeeping reaches about 86,401 SI seconds, due to lunar tides decelerating the Earth's rotation. Under the present-day timekeeping system, a leap second will need to be added to the clock every day.[15]
الفلك والفيزياء الفلكية 100,000 The proper motion of stars across the celestial sphere, which is the result of their movement through the Milky Way, renders many of the constellations unrecognisable.[16]
الفلك والفيزياء الفلكية 100,000[ب] The hypergiant star VY Canis Majoris will likely have exploded in a hypernova.[17]
الجيولوجيا وعلم الكواكب 100,000[ب] Earth will likely have undergone a supervolcanic eruption large enough to erupt 400 km3 of magma. For comparison, Lake Erie is 484 km3.[18]
Biology 100,000 Native North American earthworms, such as Megascolecidae, will have naturally spread north through the United States Upper Midwest to the Canada–US border, recovering from the Laurentide ice sheet glaciation (38°N to 49°N), assuming a migration rate of 10 m / year.[19] (However, non-native invasive earthworms of North America have already been introduced by humans on a much shorter timescale, causing a shock to the regional ecosystem).
الجيولوجيا وعلم الكواكب 100,000+ As one of the long-term effects of global warming, 10% of anthropogenic carbon dioxide will still remain in a stabilized atmosphere.[20]
الجيولوجيا وعلم الكواكب 250,000 Lōʻihi, the youngest volcano in the Hawaiian–Emperor seamount chain, will rise above the surface of the ocean and become a new volcanic island.[21]
الفلك والفيزياء الفلكية ~300,000[ب] At some point in the next "several" hundred thousand years, the Wolf-Rayet star WR 104 is expected to explode in a supernova. It has been suggested that it may produce a gamma ray burst that could pose a threat to life on Earth should its poles be aligned 12° or lower towards Earth. The star's axis of rotation has yet to be determined with certainty.[22]
الفلك والفيزياء الفلكية 500,000[ب] Earth will likely have been hit by an asteroid of roughly 1 km in diameter, assuming it cannot be averted.[23]
الجيولوجيا وعلم الكواكب 500,000 The rugged terrain of Badlands National Park in South Dakota will have eroded away completely.[24]
الجيولوجيا وعلم الكواكب 950,000 Meteor Crater, a large impact crater in Arizona considered the "freshest" of its kind, will have been eroded away.[25]
الجيولوجيا وعلم الكواكب 1 million[ب] Earth will likely have undergone a supervolcanic eruption large enough to erupt 3,200 km3 of magma, an event comparable to the Toba supereruption 75,000 years ago.[18]
الفلك والفيزياء الفلكية 1 million[ب] Highest estimated time until the red supergiant star Betelgeuse explodes in a supernova. The explosion is expected to be easily visible in daylight.[26][27]
الفلك والفيزياء الفلكية 1.4 million The star Gliese 710 will pass as close as 1.1 light years to the Sun before moving away. This may gravitationally perturb members of the Oort cloud, a halo of icy bodies orbiting at the edge of the Solar System, thereafter increasing the likelihood of a cometary impact in the inner Solar System.[28]
Biology 2 million Estimated time required for coral reef ecosystems to physically rebuild and biologically recover from current human-caused ocean acidification.[29]
الجيولوجيا وعلم الكواكب 2 million+ The Grand Canyon will erode further, deepening slightly, but principally widening into a broad valley surrounding the Colorado River.[30]
الفلك والفيزياء الفلكية 2.7 million Average orbital half-life of current centaurs, that are unstable because of gravitational interaction of the several outer planets.[31] See predictions for notable centaurs.
الجيولوجيا وعلم الكواكب 10 million The widening East African Rift valley is flooded by the Red Sea, causing a new ocean basin to divide the continent of Africa[32] and the African Plate into the newly formed Nubian Plate and the Somali Plate.
Biology 10 million Estimated time for full recovery of biodiversity after a potential Holocene extinction, if it were on the scale of the five previous major extinction events.[33]

Even without a mass extinction, by this time most current species will have disappeared through the background extinction rate, with many clades gradually evolving into new forms.[34] (However, without a mass extinction, there will now be an ecological crisis requiring millions of years of recovery).

الفلك والفيزياء الفلكية 50 million Maximum estimated time before the moon Phobos collides with Mars.[35]
الجيولوجيا وعلم الكواكب 50 million The Californian coast begins to be subducted into the Aleutian Trench due to its northward movement along the San Andreas Fault.[36]

Africa's collision with Eurasia closes the Mediterranean Basin and creates a mountain range similar to the Himalayas.[37]

The Appalachian Mountains peaks will largely erode away,[38] weathering at 5.7 Bubnoff units, although topography will actually increase as regional valleys deepen at twice this rate.[39]

الجيولوجيا وعلم الكواكب 50 - 60 million The Canadian Rockies will erode away to a plain, assuming a rate of 60 Bubnoff units.[40] (The Southern Rockies in the United States are eroding at a somewhat slower rate.[41])
الجيولوجيا وعلم الكواكب 50 - 400 million Estimated time for Earth to naturally replenish its fossil fuel reserves.[42]
الجيولوجيا وعلم الكواكب 80 million The Big Island becomes the last of the current Hawaiian Islands to sink beneath the surface of the ocean.[43]
الفلك والفيزياء الفلكية 100 million[ب] Earth will likely have been hit by an asteroid comparable in size to the one that triggered the K–Pg extinction 65 million years ago, assuming it cannot be averted.[44]
الجيولوجيا وعلم الكواكب 100 million Upper estimate for lifespan of the rings of Saturn in their current state.[45]
Mathematics 230 million Prediction of the orbits of the planets is impossible over greater time spans than this, due to the limitations of Lyapunov time.[46]
الفلك والفيزياء الفلكية 240 million From its present position, the Solar System completes one full orbit of the Galactic center.[47]
الجيولوجيا وعلم الكواكب 250 million All the continents on Earth may fuse into a supercontinent. Three potential arrangements of this configuration have been dubbed Amasia, Novopangaea, and Pangaea Ultima.[48][49]
الجيولوجيا وعلم الكواكب 400–500 million The supercontinent (Pangaea Ultima, Novopangaea, or Amasia) will likely have rifted apart.[49]
الفلك والفيزياء الفلكية 500–600 million[ب] Estimated time until a gamma ray burst, or massive, hyperenergetic supernova, occurs within 6,500 light-years of Earth; close enough for its rays to affect Earth's ozone layer and potentially trigger a mass extinction, assuming the hypothesis is correct that a previous such explosion triggered the Ordovician–Silurian extinction event. However, the supernova would have to be precisely oriented relative to Earth to have any negative effect.[50]
الفلك والفيزياء الفلكية 600 million Tidal acceleration moves the Moon far enough from Earth that total solar eclipses are no longer possible.[51]
الجيولوجيا وعلم الكواكب 600 million The Sun's increasing luminosity begins to disrupt the carbonate–silicate cycle; higher luminosity increases weathering of surface rocks, which traps carbon dioxide in the ground as carbonate. As water evaporates from the Earth's surface, rocks harden, causing plate tectonics to slow and eventually stop. Without volcanoes to recycle carbon into the Earth's atmosphere, carbon dioxide levels begin to fall.[52] By this time, carbon dioxide levels will fall to the point at which C3 photosynthesis is no longer possible. All plants that utilize C3 photosynthesis (~99 percent of present-day species) will die.[53]
الجيولوجيا وعلم الكواكب 800 million Carbon dioxide levels fall to the point at which C4 photosynthesis is no longer possible.[53] Free oxygen and ozone disappear from the atmosphere. Multicellular life dies out.[54]
الجيولوجيا وعلم الكواكب 1 billion[ت] The Sun's luminosity has increased by 10 percent, causing Earth's surface temperatures to reach an average of ~320 K (47 °C, 116 °F). The atmosphere will become a "moist greenhouse", resulting in a runaway evaporation of the oceans.[55] Pockets of water may still be present at the poles, allowing abodes for simple life.[56][57]
الجيولوجيا وعلم الكواكب 1.3 billion Eukaryotic life dies out due to carbon dioxide starvation. Only prokaryotes remain.[54]
الفلك والفيزياء الفلكية 1.5–1.6 billion The Sun's increasing luminosity causes its circumstellar habitable zone to move outwards; as carbon dioxide increases in Mars's atmosphere, its surface temperature rises to levels akin to Earth during the ice age.[54][58]
الجيولوجيا وعلم الكواكب 2.3 billion The Earth's outer core freezes, if the inner core continues to grow at its current rate of 1 mm per year.[59][60] Without its liquid outer core, the Earth's magnetic field shuts down,[61] and charged particles emanating from the Sun gradually deplete the atmosphere.[62]
الجيولوجيا وعلم الكواكب 2.8 billion Earth's surface temperature, even at the poles, reaches an average of ~422 K (149 °C; 300 °F). At this point, life, now reduced to unicellular colonies in isolated, scattered microenvironments such as high-altitude lakes or subsurface caves, will completely die out.[52][63][ث]
الفلك والفيزياء الفلكية 3 billion Median point at which the Moon's increasing distance from the Earth lessens its stabilising effect on the Earth's axial tilt. As a consequence, Earth's true polar wander becomes chaotic and extreme.[64]
الفلك والفيزياء الفلكية 3.3 billion One percent chance that Jupiter's gravity may make Mercury's orbit so eccentric as to collide with Venus, sending the inner Solar System into chaos and potentially leading to a planetary collision with Earth. Other possible scenarios include Mercury colliding with the Sun, being ejected from the Solar System, or colliding with Earth.[65]
الجيولوجيا وعلم الكواكب 3.5–4.5 billion The amount of water vapour in the lower atmosphere increases to 40%. This, combined with the luminosity of the Sun reaching roughly 35–40% more than its present-day value, will result in Earth's atmosphere heating up and the surface temperature skyrocketing to roughly 1,600 K (1,330 °C; 2,420 °F), hot enough to melt surface rock.[66][67][68][69] This essentially will make the planet much like how Venus is today.[70]
الفلك والفيزياء الفلكية 3.6 billion Neptune's moon Triton falls through the planet's Roche limit, potentially disintegrating into a planetary ring system similar to Saturn's.[71]
الفلك والفيزياء الفلكية 4 billion Median point by which the Andromeda Galaxy will have collided with the Milky Way, which will thereafter merge to form a galaxy dubbed "Milkomeda".[72] The planets of the Solar System are expected to be relatively unaffected by this collision.[73][74][75]
الفلك والفيزياء الفلكية 5 billion With the hydrogen supply exhausted at its core, the Sun leaves the main sequence and begins to evolve into a red giant.[76]
الفلك والفيزياء الفلكية 7.5 billion Earth and Mars may become tidally locked with the expanding subgiant Sun.[58]
الفلك والفيزياء الفلكية 7.59 billion The Earth and Moon are very likely destroyed by falling into the Sun, just before the Sun reaches the tip of its red giant phase and its maximum radius of 256 times the present day value.[76][ج] Before the final collision, the Moon possibly spirals below Earth's Roche limit, breaking into a ring of debris, most of which falls to the Earth's surface.[77]
الفلك والفيزياء الفلكية 7.9 billion The Sun reaches the tip of the red-giant branch of the Hertzsprung–Russell diagram, achieving its maximum radius of 256 times the present day value.[78] In the process, Mercury, Venus, very likely Earth, and possibly Mars are destroyed.[76]

During these times, it is possible that Saturn's moon Titan could achieve surface temperatures necessary to support life.[79]

الفلك والفيزياء الفلكية 8 billion The Sun becomes a carbon-oxygen white dwarf with about 54.05 percent its present mass.[76][80][81][ح] At this point, if somehow the Earth survives, temperatures on the surface of the planet, as well as other remaining planets in the Solar System, will begin to start dropping rapidly, due to the white dwarf Sun emitting much less energy than it does today.
الفلك والفيزياء الفلكية 22 billion The end of the Universe in the Big Rip scenario, assuming a model of dark energy with w = −1.5.[82] Observations of galaxy cluster speeds by the Chandra X-ray Observatory suggest that the true value of w is ~-0.991, meaning the Big Rip will not occur.[83]
الفلك والفيزياء الفلكية 50 billion If the Earth and Moon are not engulfed by the Sun, by this time they will become tidelocked, with each showing only one face to the other.[84][85] Thereafter, the tidal action of the Sun will extract angular momentum from the system, causing the lunar orbit to decay and the Earth's spin to accelerate.[86]
الفلك والفيزياء الفلكية 100 billion The Universe's expansion causes all galaxies beyond the former Milky Way's Local Group to disappear beyond the cosmic light horizon, removing them from the observable universe.[87]
الفلك والفيزياء الفلكية 150 billion The cosmic microwave background cools from its current temperature of ~2.7 K to 0.3 K, rendering it essentially undetectable with current technology.[88]
الفلك والفيزياء الفلكية 450 billion Median point by which the ~47 galaxies[89] of the Local Group will coalesce into a single large galaxy.[4]
الفلك والفيزياء الفلكية 800 billion Expected time when the net light emission from the combined "Milkomeda" galaxy begins to decline as the red dwarf stars pass through their blue dwarf stage of peak luminosity.[90]
الفلك والفيزياء الفلكية 1012 (1 trillion) Low estimate for the time until star formation ends in galaxies as galaxies are depleted of the gas clouds they need to form stars.[4]

The universe's expansion, assuming a constant dark energy density, multiplies the wavelength of the cosmic microwave background by 1029, exceeding the scale of the cosmic light horizon and rendering its evidence of the Big Bang undetectable. However, it may still be possible to determine the expansion of the universe through the study of hypervelocity stars.[87]

الفلك والفيزياء الفلكية 4x1012 (4 trillion) Estimated time until the red dwarf star Proxima Centauri, the closest star to the Sun at a distance of 4.25 light-years, leaves the main sequence and becomes a white dwarf.[91]
الفلك والفيزياء الفلكية 1.2x1013 (12 trillion) Estimated time until the red dwarf VB 10, as of 2016 the least massive main sequence star with an estimated mass of 0.075 M, runs out of hydrogen in its core and becomes a white dwarf.[92][93]
الفلك والفيزياء الفلكية 3×1013 (30 trillion) Estimated time for stars (including the Sun) to undergo a close encounter with another star in local stellar neighborhoods. Whenever two stars (or stellar remnants) pass close to each other, their planets' orbits can be disrupted, potentially ejecting them from the system entirely. On average, the closer a planet's orbit to its parent star the longer it takes to be ejected in this manner, because it is gravitationally more tightly bound to the star.[94]
الفلك والفيزياء الفلكية 1014 (100 trillion) High estimate for the time until normal star formation ends in galaxies.[4] This marks the transition from the Stelliferous Era to the Degenerate Era; with no free hydrogen to form new stars, all remaining stars slowly exhaust their fuel and die.[3]
الفلك والفيزياء الفلكية 1.1–1.2×1014 (110–120 trillion) Time by which all stars in the universe will have exhausted their fuel (the longest-lived stars, low-mass red dwarfs, have lifespans of roughly 10–20 trillion years).[4] After this point, the stellar-mass objects remaining are stellar remnants (white dwarfs, neutron stars, black holes) and brown dwarfs.

Collisions between brown dwarfs will create new red dwarfs on a marginal level: on average, about 100 stars will be shining in what was once the Milky Way. Collisions between stellar remnants will create occasional supernovae.[4]

الفلك والفيزياء الفلكية 1015 (1 quadrillion) Estimated time until stellar close encounters detach all planets in star systems (including the Solar System) from their orbits.[4]

By this point, the Sun will have cooled to five degrees above absolute zero.[95]

الفلك والفيزياء الفلكية 1019 to 1020 (10–100 quintillion) Estimated time until 90%–99% of brown dwarfs and stellar remnants (including the Sun) are ejected from galaxies. When two objects pass close enough to each other, they exchange orbital energy, with lower-mass objects tending to gain energy. Through repeated encounters, the lower-mass objects can gain enough energy in this manner to be ejected from their galaxy. This process eventually causes the Milky Way to eject the majority of its brown dwarfs and stellar remnants.[4][96]
الفلك والفيزياء الفلكية 1020 (100 quintillion) Estimated time until the Earth collides with the black dwarf Sun due to the decay of its orbit via emission of gravitational radiation,[97] if the Earth is not ejected from its orbit by a stellar encounter or engulfed by the Sun during its red giant phase.[97]
الفلك والفيزياء الفلكية 1030 Estimated time until those stars not ejected from galaxies (1% – 10%) fall into their galaxies' central supermassive black holes. By this point, with binary stars having fallen into each other, and planets into their stars, via emission of gravitational radiation, only solitary objects (stellar remnants, brown dwarfs, ejected planets, black holes) will remain in the universe.[4]
فيزياء الجسيمات 2×1036 The estimated time for all nucleons in the observable universe to decay, if the proton half-life takes its smallest possible value (8.2×1033 years).[98][99][خ]
فيزياء الجسيمات 3×1043 Estimated time for all nucleons in the observable universe to decay, if the proton half-life takes the largest possible value, 1041 years,[4] assuming that the Big Bang was inflationary and that the same process that made baryons predominate over anti-baryons in the early Universe makes protons decay.[99][خ] By this time, if protons do decay, the Black Hole Era, in which black holes are the only remaining celestial objects, begins.[3][4]
فيزياء الجسيمات 1065 Assuming that protons do not decay, estimated time for rigid objects like rocks to rearrange their atoms and molecules via quantum tunneling. On this timescale, all matter is liquid.[97]
فيزياء الجسيمات 5.8×1068 Estimated time until a stellar mass black hole with a mass of 3 solar masses decays into subatomic particles by the Hawking process.[100]
فيزياء الجسيمات 1.342×1099 Estimated time until the central black hole of S5 0014+81, as of 2015 the most massive known with the mass of 40 billion solar masses, dissipates by the emission of Hawking radiation,[100] assuming zero angular momentum (non-rotating black hole). However, the black hole is on the state of accretion, so the time it takes may be longer than stated on the left.
فيزياء الجسيمات 1.7×10106 Estimated time until a supermassive black hole with a mass of 20 trillion solar masses decays by the Hawking process.[100] This marks the end of the Black Hole Era. Beyond this time, if protons do decay, the Universe enters the Dark Era, in which all physical objects have decayed to subatomic particles, gradually winding down to their final energy state in the heat death of the universe.[3][4]
فيزياء الجسيمات 10200 Estimated high time for all nucleons in the observable universe to decay, if they don't via the above process, through any one of many different mechanisms allowed in modern particle physics (higher-order baryon non-conservation processes, virtual black holes, sphalerons, etc.) on time scales of 1046 to 10200 years.[3]
فيزياء الجسيمات 101500 Assuming protons do not decay, the estimated time until all baryonic matter has either fused together to form iron-56 or decayed from a higher mass element into iron-56.[97] (see iron star)
فيزياء الجسيمات [د][ذ] Low estimate for the time until all objects exceeding the Planck mass[المصدر لا يؤكد ذلك] collapse via quantum tunnelling into black holes, assuming no proton decay or virtual black holes.[97] On this vast timescale, even ultra-stable iron stars are destroyed by quantum tunnelling events. First iron stars of sufficient mass will collapse via tunnelling into neutron stars. Subsequently neutron stars and any remaining iron stars collapse via tunnelling into black holes. The subsequent evaporation of each resulting black hole into sub-atomic particles (a process lasting roughly 10100 years) is on these timescales instantaneous.
فيزياء الجسيمات [ب] Estimated time for a Boltzmann brain to appear in the vacuum via a spontaneous entropy decrease.[6]
فيزياء الجسيمات High estimate for the time until all matter collapses into neutron stars or black holes, assuming no proton decay or virtual black holes,[97] which then (on these timescales) instantaneously evaporate into sub-atomic particles.
فيزياء الجسيمات High estimate for the time for the Universe to reach its final energy state, even in the presence of a false vacuum.[6][المصدر لا يؤكد ذلك]
فيزياء الجسيمات [ب] Estimated time for random quantum fluctuations and quantum tunnelling to generate a new Big Bang.[101]

Because the total number of ways in which all the subatomic particles in the observable universe can be combined is ,[102][103] a number which, when multiplied by , disappears into the rounding error, this is also the time required for a quantum-tunnelled and quantum fluctuation-generated Big Bang to produce a new universe identical to our own, assuming that every new universe contained at least the same number of subatomic particles and obeyed laws of physics within the range predicted by string theory.[104]

More simply, by this time the entire life cycle of the universe, from Big Bang to final energy state to rebirth, will have repeated the same number of times as all possible combinations of subatomic particles in the observable universe.


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

مستقبل البشرية

Key.svg سنين من الآن الحدث
technology and culture 10,000 Most probable estimated lifespan of technological civilization, according to Frank Drake's original formulation of the Drake equation.[105]
Biology 10,000 If globalization trends lead to panmixia, human genetic variation will no longer be regionalized, as the effective population size will equal the actual population size.[106] (This does not mean homogeneity, as minority traits will still be preserved, e.g., no disappearing blonde gene, but will rather be evenly distributed worldwide.)
Mathematics 10,000 Humanity has a 95% probability of being extinct by this date, according to Brandon Carter's formulation of the controversial Doomsday argument, which argues that half of the humans who will ever have lived have probably already been born.[107]
technology and culture 20,000 According to the glottochronology linguistic model of Morris Swadesh, future languages should retain just 1 out of 100 "core vocabulary" words on their Swadesh list compared to that of their current progenitors.[108]
الجيولوجيا وعلم الكواكب 100,000+ Time required to terraform Mars with an oxygen-rich breathable atmosphere, using only plants with solar efficiency comparable to the biosphere currently found on Earth.[109]
Technology and culture 1 million Estimated shortest time by which humanity could colonize our Milky Way galaxy and become capable of harnessing all the energy of the galaxy, assuming a velocity of 10% the speed of light.[110]
Biology 2 million Vertebrate species separated for this long will generally undergo allopatric speciation.[111] Evolutionary biologist James W. Valentine predicted that if humanity has been dispersed among genetically isolated space colonies over this time, the galaxy will host an evolutionary radiation of multiple human species with a "diversity of form and adaptation that would astound us".[112] (This would be a natural process of isolated populations, unrelated to potential deliberate genetic enhancement technologies.)
Mathematics 7.8 million Humanity has a 95% probability of being extinct by this date, according to J. Richard Gott's formulation of the controversial Doomsday argument, which argues that we have probably already lived through half the duration of human history.[113]
technology and culture 5 – 50 مليون Shortest time by which the entire galaxy could be colonised by means within reach of current technology.[114]
technology and culture 100 million Maximal estimated lifespan of technological civilization, according to Frank Drake's original formulation of the Drake equation.[115]
الفلك والفيزياء الفلكية 1 billion Estimated time for an astroengineering project to alter the Earth's orbit, compensating for the Sun's increasing brightness and outward migration of the habitable zone, accomplished by repeated asteroid gravity assists.[116][117]


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

المركبات الفضائية واستكشاف الفضاء

To date five spacecraft (Voyager 1, Voyager 2, Pioneer 10, Pioneer 11 and New Horizons) are on trajectories which will take them out of the Solar System and into interstellar space. Barring an extremely unlikely collision with some object, the craft should persist indefinitely.[118]

Key.svg سنين من الآن الحدث
الفلك والفيزياء الفلكية 10,000 Pioneer 10 passes within 3.8 light years of Barnard's Star.[119]
الفلك والفيزياء الفلكية 25,000 The Arecibo message, a collection of radio data transmitted on 16 November 1974, reaches the distance of its destination, the globular cluster Messier 13.[120] This is the only interstellar radio message sent to such a distant region of the galaxy. There will be a 24-light-year shift in the cluster's position in the galaxy during the time it takes the message to reach it, but as the cluster is 168 light-years in diameter, the message will still reach its destination.[121] Any reply will take at least another 25,000 years.
الفلك والفيزياء الفلكية 32,000 Pioneer 10 passes within 3 light years of Ross 248.[122][123]
الفلك والفيزياء الفلكية 40,000 Voyager 1 passes within 1.6 light years of AC+79 3888, a star in the constellation Camelopardalis also known as Gliese 445.[124]
الفلك والفيزياء الفلكية 50,000 The KEO space time capsule, if it is launched, will reenter Earth's atmosphere.[125]
الفلك والفيزياء الفلكية 296,000 Voyager 2 passes within 4.3 light years of Sirius, the brightest star in the night sky.[124]
الفلك والفيزياء الفلكية 800,000 – 8 million Low estimate of Pioneer 10 plaque lifespan, before the etching is destroyed by poorly-understood interstellar erosion processes.[126]
الفلك والفيزياء الفلكية 2 million Pioneer 10 passes near the bright star Aldebaran.[127]
الفلك والفيزياء الفلكية 4 million Pioneer 11 passes near one of the stars in the constellation Aquila.[127]
الفلك والفيزياء الفلكية 8 million The LAGEOS satellites' orbits will decay, and they will re-enter Earth's atmosphere, carrying with them a message to any far future descendants of humanity, and a map of the continents as they are expected to appear then.[128]
الفلك والفيزياء الفلكية 1 billion Estimated lifespan of the two Voyager Golden Records, before the information stored on them is rendered unrecoverable.[129]

مشاريع تكنولوجية

Key.svg سنين من الآن الحدث
technology and culture 10,000 Planned lifespan of the Long Now Foundation's several ongoing projects, including a 10,000-year clock known as the Clock of the Long Now, the Rosetta Project, and the Long Bet Project.[130]

Estimated lifespan of the HD-Rosetta analog disc, an ion beam-etched writing medium on nickel plate, a technology developed at Los Alamos National Laboratory and later commercialized. (The Rosetta Project uses this technology, named after the Rosetta Stone).

technology and culture 100,000+ Estimated lifespan of Memory of Mankind (MOM) self storage-style repository in Hallstatt salt mine in Austria, which stores information on inscribed tablets of stoneware.[131]
technology and culture 1 million Planned lifespan of the Human Document Project being developed at the University of Twente in the Netherlands.[132]
technology and culture 1 billion Estimated lifespan of "Nanoshuttle memory device" using an iron nanoparticle moved as a molecular switch through a carbon nanotube, a technology developed at the University of California at Berkeley.[133]
technology and culture more than 13 billion Estimated lifespan of "Superman memory crystal" data storage using femtosecond laser-etched nanostructures in glass, a technology developed at the University of Southampton.[134][135]

اختراعات بشرية

Key.svg سنوات من الآن الحدث
الجيولوجيا وعلم الكواكب 50,000 Estimated atmospheric lifetime of tetrafluoromethane, the most durable greenhouse gas.[136]
الجيولوجيا وعلم الكواكب 1 million Current glass objects in the environment will be decomposed.[137]

Various public monuments composed of hard granite will have eroded one meter, in a moderate climate, assuming a rate of 1 Bubnoff unit (1 mm / 1,000 years, or ~1 inch / 10,000 years).[138]

Without maintenance, the Great Pyramid of Giza will erode into unrecognizability.[139]

On the Moon, Neil Armstrong's "one small step" footprint at Tranquility Base will erode by this time, along with those left by all twelve Apollo moonwalkers, due to the accumulated effects of space weathering.[140][141] (Normal erosion processes active on Earth are not present due to the Moon's almost complete lack of atmosphere).

الجيولوجيا وعلم الكواكب 7.2 million Without maintenance, Mount Rushmore will erode into unrecognizability.[142]
الجيولوجيا وعلم الكواكب 100 million Future archaeologists should be able to identify an "Urban Stratum" of fossilized great coastal cities, mostly through the remains of underground infrastructure such as building foundations and utility tunnels.[143]

أحداث فلكية

Extremely rare astronomical events beginning in the 11th millennium AD (year 10,001) will be:

التاريخ / سنوات من الآن الحدث
Astronomy and astrophysics 20 August, AD 10,663 A simultaneous total solar eclipse and transit of Mercury.[144]
الفلك والفيزياء الفلكية 25 August, AD 11,268 A simultaneous total solar eclipse and transit of Mercury.[144]
الفلك والفيزياء الفلكية 28 February, AD 11,575 A simultaneous annular solar eclipse and transit of Mercury.[144]
الفلك والفيزياء الفلكية 17 September, AD 13,425 A near-simultaneous transit of Venus and Mercury.[144]
الفلك والفيزياء الفلكية AD 13,727 The Earth's axial precession will have made Vega the northern pole star.[145][146][147][148]
الفلك والفيزياء الفلكية 13,000 years By this point, halfway through the precessional cycle, Earth's axial tilt will be reversed, causing summer and winter to occur on opposite sides of Earth's orbit. This means that the seasons in the northern hemisphere, which experiences more pronounced seasonal variation due to a higher percentage of land, will be even more extreme, as it will be facing towards the Sun at Earth's perihelion and away from the Sun at aphelion.[146]
الفلك والفيزياء الفلكية 5 April, AD 15,232 A simultaneous total solar eclipse and transit of Venus.[144]
الفلك والفيزياء الفلكية 20 April, AD 15,790 A simultaneous annular solar eclipse and transit of Mercury.[144]
الفلك والفيزياء الفلكية 14,000-17,000 years The Earth's axial precession will make Canopus the South Star, but it will only be within 10° of the south celestial pole.[149]
الفلك والفيزياء الفلكية AD 20,346 Thuban will be the northern pole star.[150]
الفلك والفيزياء الفلكية AD 27,800 Polaris will again be the northern pole star.[151]
الفلك والفيزياء الفلكية 27,000 years The eccentricity of Earth's orbit will reach a minimum, 0.00236 (it is now 0.01671).[152][153]
الفلك والفيزياء الفلكية October, AD 38,172 A transit of Uranus from Neptune, the rarest of all planetary transits.[154]
الفلك والفيزياء الفلكية 26 July, AD 69,163 A simultaneous transit of Venus and Mercury.[144]
الفلك والفيزياء الفلكية AD 70,000 Comet Hyakutake returns to the inner solar system, after traveling in its orbit out to its aphelion 3,410 A.U. from the Sun and back.[155]
الفلك والفيزياء الفلكية 27 and 28 March, AD 224,508 Respectively, Venus and then Mercury will transit the Sun.[144]
الفلك والفيزياء الفلكية AD 571,741 A simultaneous transit of Venus and the Earth as seen from Mars[144]
الفلك والفيزياء الفلكية 6 million Comet C/1999 F1 (Catalina), one of the longest period comets known, returns to the inner solar system, after traveling in its orbit out to its aphelion 66,600 A.U. (1.05 light years) from the Sun and back.[156]

توقعات تقويمية

Key.svg سنوات من الآن الحدث
الفلك والفيزياء الفلكية 10,000
The Gregorian calendar will be roughly 10 days out of sync with the seasons.[157]
الفلك والفيزياء الفلكية &&&&&&&&&&010872.&&&&&010٬872 سنة, &&&&&&&&&&&&0267.&&&&&0267 يوم 10 June, AD 12,892 In the Hebrew calendar, due to a gradual drift with regard to the solar year, Passover will fall on the northern summer solstice (it is meant to fall around the spring equinox).[158]
الفلك والفيزياء الفلكية &&&&&&&&&&018854.&&&&&018٬854 سنة, &&&&&&&&&&&&0106.&&&&&0106 يوم AD 20,874 The lunar Islamic calendar and the solar Gregorian calendar will share the same year number. After this, the shorter Islamic calendar will slowly overtake the Gregorian.[159]
الفلك والفيزياء الفلكية 25,000
The Tabular Islamic calendar will be roughly 10 days out of sync with the Moon's phase.[160]
الفلك والفيزياء الفلكية &&&&&&&&&&046881.&&&&&046٬881 سنة, &&&&&&&&&&&&0165.&&&&&0165 يوم 1 March, AD 48,901[ر] The Julian calendar (365.25 days) and Gregorian calendar (365.2425 days) will be one year apart.[161]

الطاقة النووية

Key.svg الأعوام من الآن الحدث
فيزياء الجسيمات 10,000 The Waste Isolation Pilot Plant, for nuclear weapons waste, is planned to be protected until this time, with a "Permanent Marker" system designed to warn off visitors through both multiple languages (the six UN languages and Navajo) and through pictograms.[162] (The Human Interference Task Force has provided the theoretical basis for United States plans for future nuclear semiotics.)
فيزياء الجسيمات 20,000 The Chernobyl Exclusion Zone, the 2,600 km2 (1,000 sq mi) area of Ukraine and Belarus left deserted by the 1986 Chernobyl disaster, becomes safe for human life.[163]
الجيولوجيا وعلم الكواكب 30,000 Estimated supply lifespan of fission-based breeder reactor reserves, using known sources, assuming 2009 world energy consumption.[164]
الجيولوجيا وعلم الكواكب 60,000 Estimated supply lifespan of fission-based light water reactor reserves if it is possible to extract all the uranium from seawater, assuming 2009 world energy consumption.[164]
فيزياء الجسيمات 211,000 Half-life of technetium-99, the most important long-lived fission product in uranium-derived nuclear waste.
فيزياء الجسيمات 15.7 million Half-life of iodine-129, the most durable long-lived fission product in uranium-derived nuclear waste.
الجيولوجيا وعلم الكواكب 60 million Estimated supply lifespan of fusion power reserves if it is possible to extract all the lithium from seawater, assuming 1995 world energy consumption.[165]
الجيولوجيا وعلم الكواكب 5 billion Estimated supply lifespan of fission-based breeder reactor reserves if it is possible to extract all the uranium from seawater, assuming 1983 world energy consumption.[166]
الجيولوجيا وعلم الكواكب 150 billion Estimated supply lifespan of fusion power reserves if it is possible to extract all the deuterium from seawater, assuming 1995 world energy consumption.[165]

خطوط زمنية بيانية

For graphical, logarithmic timelines of these events see:

انظر أيضاً

ملاحظات

  1. ^ The precise cutoff point is 0:00 on 1 January AD 10,001
  2. ^ أ ب ت ث ج ح خ د ذ ر ز This represents the time by which the event will most probably have happened. It may occur randomly at any time from the present.
  3. ^ Units are short scale
  4. ^ There is a roughly 1 in 100,000 chance that the Earth might be ejected into interstellar space by a stellar encounter before this point, and a 1 in 3 million chance that it will then be captured by another star. Were this to happen, life, assuming it survived the interstellar journey, could potentially continue for far longer.
  5. ^ This has been a tricky question for quite a while; see the 2001 paper by Rybicki, K. R. and Denis, C. However, according to the latest calculations, this happens with a very high degree of certainty.
  6. ^ Based upon the weighted least-squares best fit on p. 16 of Kalirai et al. with the initial mass equal to a solar mass.
  7. ^ أ ب Around 264 half-lives. Tyson et al. employ the computation with a different value for half-life.
  8. ^ is 1 followed by 1026 (100 septillion) zeroes.
  9. ^ Although listed in years for convenience, the numbers beyond this point are so vast that their digits would remain unchanged regardless of which conventional units they were listed in, be they nanoseconds or star lifespans.
  10. ^ Manually calculated from the fact that the calendars were 10 days apart in 1582 and grew further apart by 3 days every 400 years. 1 March AD 48900 (Julian) and 1 March AD 48901 (Gregorian) are both Tuesday. The Julian day number (a measure used by astronomers) at Greenwich mean midnight (start of day) is 19 581 842.5 for both dates.

الهامش

  1. ^ Rescher, Nicholas (1998). Predicting the future: An introduction to the theory of forecasting. State University of New York Press. ISBN 0-7914-3553-9.
  2. ^ Nave, C.R. "Second Law of Thermodynamics". Georgia State University. Retrieved 3 December 2011.
  3. ^ أ ب ت ث ج Adams, Fred; Laughlin, Greg (1999). The Five Ages of the Universe. New York: The Free Press. ISBN 978-0-684-85422-9.
  4. ^ أ ب ت ث ج ح خ د ذ ر ز س Adams, Fred C.; Laughlin, Gregory (April 1997). "A dying universe: the long-term fate and evolution of astrophysical objects". Reviews of Modern Physics. 69 (2): 337–372. arXiv:astro-ph/9701131. Bibcode:1997RvMP...69..337A. doi:10.1103/RevModPhys.69.337.
  5. ^ Komatsu, E.; Smith, K. M.; Dunkley, J.; et al. (2011). "Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation". The Astrophysical Journal Supplement Series. 192 (2): 18. arXiv:1001.4731. Bibcode:2011ApJS..192...19W. doi:10.1088/0067-0049/192/2/18.
  6. ^ أ ب ت Linde, Andrei. (2007). "Sinks in the Landscape, Boltzmann Brains and the Cosmological Constant Problem". Journal of Cosmology and Astroparticle Physics. 2007 (1): 022. arXiv:hep-th/0611043. Bibcode:2007JCAP...01..022L. doi:10.1088/1475-7516/2007/01/022.
  7. ^ Mengel, M.; A. Levermann (4 May 2014). "Ice plug prevents irreversible discharge from East Antarctica". Nature Climate Change. 4 (6): 451–455. Bibcode:2014NatCC...4..451M. doi:10.1038/nclimate2226.
  8. ^ Hockey, T.; Trimble, V. (2010). "Public reaction to a V = -12.5 supernova". The Observatory. 130: 167. Bibcode:2010Obs...130..167H.
  9. ^ Schorghofer, Norbert (23 September 2008). "Temperature response of Mars to Milankovitch cycles" (PDF). Geophysical Research Letters. 35 (18): L18201. Bibcode:2008GeoRL..3518201S. doi:10.1029/2008GL034954.
  10. ^ Beech, Martin (2009). Terraforming: The Creating of Habitable Worlds. Springer. pp. 138–142.
  11. ^ أ ب Matthews, R. A. J. (Spring 1994). "The Close Approach of Stars in the Solar Neighborhood". Quarterly Journal of the Royal Astronomical Society. 35 (1): 1. Bibcode:1994QJRAS..35....1M.
  12. ^ Berger, A & Loutre, MF (2002). "Climate: an exceptionally long interglacial ahead?". Science. 297 (5585): 1287–8. doi:10.1126/science.1076120. PMID 12193773.
  13. ^ "Niagara Falls Geology Facts & Figures". Niagara Parks. Retrieved 29 April 2011.
  14. ^ Bastedo, Jamie (1994). Shield Country: The Life and Times of the Oldest Piece of the Planet. Arctic Institute of North America of the University of Calgary. p. 202.
  15. ^ قالب:Cite arXiv
  16. ^ Tapping, Ken (2005). "The Unfixed Stars". National Research Council Canada. Retrieved 29 December 2010.
  17. ^ Monnier, J. D.; Tuthill, P.; Lopez, GB; et al. (1999). "The Last Gasps of VY Canis Majoris: Aperture Synthesis and Adaptive Optics Imagery". The Astrophysical Journal. 512 (1): 351–361. arXiv:astro-ph/9810024. Bibcode:1999ApJ...512..351M. doi:10.1086/306761.
  18. ^ أ ب "Super-eruptions: Global effects and future threats". The Geological Society. Retrieved 25 May 2012.
  19. ^ Schaetzl, Randall J.; Anderson, Sharon (2005). Soils: Genesis and Geomorphology. Cambridge University Press. p. 105.
  20. ^ David Archer (2009). The Long Thaw: How Humans Are Changing the Next 100,000 Years of Earth's Climate. Princeton University Press. p. 123. ISBN 978-0-691-13654-7.
  21. ^ "Frequently Asked Questions". Hawai'i Volcanoes National Park. 2011. Retrieved 22 October 2011.
  22. ^ Tuthill, Peter; Monnier, John; Lawrance, Nicholas; Danchi, William; Owocki, Stan; Gayley, Kenneth (2008). "The Prototype Colliding-Wind Pinwheel WR 104". The Astrophysical Journal. 675 (1). arXiv:0712.2111. doi:10.1086/527286.
  23. ^ Bostrom, Nick (March 2002). "Existential Risks: Analyzing Human Extinction Scenarios and Related Hazards". Journal of Evolution and Technology. 9 (1). Retrieved 10 September 2012.
  24. ^ "Badlands National Park - Nature & Science - Geologic Formations".
  25. ^ Landstreet, John D. (2003). Physical Processes in the Solar System: An introduction to the physics of asteroids, comets, moons and planets. Keenan & Darlington. p. 121.
  26. ^ "Sharpest Views of Betelgeuse Reveal How Supergiant Stars Lose Mass". Press Releases. European Southern Observatory. 29 July 2009. Retrieved 6 September 2010.
  27. ^ Sessions, Larry (29 July 2009). "Betelgeuse will explode someday". EarthSky Communications, Inc. Retrieved 16 November 2010.
  28. ^ Bobylev, Vadim V. (March 2010). "Searching for Stars Closely Encountering with the Solar System". Astronomy Letters. 36 (3): 220–226. arXiv:1003.2160. Bibcode:2010AstL...36..220B. doi:10.1134/S1063773710030060.
  29. ^ Goldstein, Natalie (2009). Global Warming. Infobase Publishing. p. 53.
  30. ^ "Grand Canyon - Geology - A dynamic place". Views of the National Parks. National Park Service.
  31. ^ Horner, J.; Evans, N.W.; Bailey, M. E. (2004). "Simulations of the Population of Centaurs I: The Bulk Statistics". Monthly Notices of the Royal Astronomical Society. 354 (3): 798–810. arXiv:astro-ph/0407400. Bibcode:2004MNRAS.354..798H. doi:10.1111/j.1365-2966.2004.08240.x.
  32. ^ Haddok, Eitan (29 September 2008). "Birth of an Ocean: The Evolution of Ethiopia's Afar Depression". Scientific American. Retrieved 27 December 2010.
  33. ^ Kirchner, James W.; Weil, Anne (9 March 2000). "Delayed biological recovery from extinctions throughout the fossil record". Nature. 404 (6774): 177–180. Bibcode:2000Natur.404..177K. doi:10.1038/35004564. PMID 10724168.
  34. ^ Wilson, Edward O. (1999). The Diversity of Life. W. W. Norton & Company. p. 216.
  35. ^ Bills, Bruce G.; Gregory A. Neumann; David E. Smith; Maria T. Zuber (2005). "Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos" (PDF). Journal of Geophysical Research. 110 (E07004). Bibcode:2005JGRE..110.7004B. doi:10.1029/2004je002376.
  36. ^ Garrison, Tom (2009). Essentials of Oceanography (5 ed.). Brooks/Cole. p. 62.
  37. ^ "Continents in Collision: Pangea Ultima". NASA. 2000. Retrieved 29 December 2010.
  38. ^ "Geology". Encyclopedia of Appalachia. University of Tennessee Press. 2011.
  39. ^ Hancock, Gregory; Kirwan, Matthew (January 2007). "Summit erosion rates deduced from 10Be: Implications for relief production in the central Appalachians" (PDF). Geology. 35 (1): 89. Bibcode:2007Geo....35...89H. doi:10.1130/g23147a.1.
  40. ^ Yorath, C. J. (1995). Of rocks, mountains and Jasper: a visitor's guide to the geology of Jasper National Park. Dundurn Press. p. 30.
  41. ^ Dethier, David P.; Ouimet, W.; Bierman, P. R.; Rood, D. H.; et al. (2014). "Basins and bedrock: Spatial variation in 10Be erosion rates and increasing relief in the southern Rocky Mountains, USA" (PDF). Geology. 42 (2): 167–170. Bibcode:2014Geo....42..167D. doi:10.1130/G34922.1.
  42. ^ Patzek, Tad W. (2008). "Can the Earth Deliver the Biomass-for-Fuel we Demand?". In Pimentel, David (ed.). Biofuels, Solar and Wind as Renewable Energy Systems: Benefits and Risks. Springer.
  43. ^ Perlman, David (14 October 2006). "Kiss that Hawaiian timeshare goodbye / Islands will sink in 80 million years". San Francisco Chronicle.
  44. ^ Nelson, Stephen A. "Meteorites, Impacts, and Mass Extinction". Tulane University. Retrieved 13 January 2011.
  45. ^ Lang, Kenneth R. (2003). The Cambridge Guide to the Solar System. Cambridge University Press. pp. 328–329.
  46. ^ Hayes, Wayne B. (2007). "Is the Outer Solar System Chaotic?". Nature Physics. 3 (10): 689–691. arXiv:astro-ph/0702179. Bibcode:2007NatPh...3..689H. doi:10.1038/nphys728.
  47. ^ Leong, Stacy (2002). "Period of the Sun's Orbit Around the Galaxy (Cosmic Year)". The Physics Factbook. Retrieved 2 April 2007.
  48. ^ Scotese, Christopher R. "Pangea Ultima will form 250 million years in the Future". Paleomap Project. Retrieved 13 March 2006.
  49. ^ أ ب Williams, Caroline; Nield, Ted (20 October 2007). "Pangaea, the comeback". New Scientist. Retrieved 2 January 2014.
  50. ^ Minard, Anne (2009). "Gamma-Ray Burst Caused Mass Extinction?". National Geographic News. Retrieved 2012-08-27.
  51. ^ "Questions Frequently Asked by the Public About Eclipses". NASA. Retrieved 7 March 2010.
  52. ^ أ ب O'Malley-James, Jack T.; Greaves, Jane S.; Raven, John A.; Cockell, Charles S. (2012). "Swansong Biospheres: Refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes". International Journal of Astrobiology. 12 (2): 99–112. arXiv:1210.5721. Bibcode:2013IJAsB..12...99O. doi:10.1017/S147355041200047X.
  53. ^ أ ب قالب:Cite arXiv
  54. ^ أ ب ت Franck, S.; Bounama, C.; Von Bloh, W. (November 2005). "Causes and timing of future biosphere extinction" (PDF). Biogeosciences Discussions. 2 (6): 1665–1679. Bibcode:2005BGD.....2.1665F. doi:10.5194/bgd-2-1665-2005. Retrieved 19 October 2011.
  55. ^ Schröder, K.-P.; Connon Smith, Robert (1 May 2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155–163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x.
  56. ^ Brownlee, Donald E. (2010). "Planetary habitability on astronomical time scales". In Schrijver, Carolus J.; Siscoe, George L. (eds.). Heliophysics: Evolving Solar Activity and the Climates of Space and Earth. Cambridge University Press. ISBN 978-0-521-11294-9.
  57. ^ Li King-Fai; Pahlevan, Kaveh; Kirschvink, Joseph L.; Yung, Luk L. (2009). "Atmospheric pressure as a natural climate regulator for a terrestrial planet with a biosphere". Proceedings of the National Academy of Sciences of the United States of America. 106 (24): 9576–9. Bibcode:2009PNAS..106.9576L. doi:10.1073/pnas.0809436106. PMC 2701016. PMID 19487662.
  58. ^ أ ب Kargel, Jeffrey Stuart (2004). Mars: A Warmer, Wetter Planet. Springer. p. 509. ISBN 978-1-85233-568-7. Retrieved 29 October 2007.
  59. ^ Waszek, Lauren; Irving, Jessica; Deuss, Arwen (20 February 2011). "Reconciling the Hemispherical Structure of Earth's Inner Core With its Super-Rotation". Nature Geoscience. 4 (4): 264–267. Bibcode:2011NatGe...4..264W. doi:10.1038/ngeo1083.
  60. ^ McDonough, W. F. (2004). "Compositional Model for the Earth's Core". Treatise on Geochemistry. 2: 547–568. Bibcode:2003TrGeo...2..547M. doi:10.1016/B0-08-043751-6/02015-6. ISBN 978-0-08-043751-4.
  61. ^ Luhmann, J. G.; Johnson, R. E.; Zhang, M. H. G. (1992). "Evolutionary impact of sputtering of the Martian atmosphere by O+ pickup ions". Geophysical Research Letters. 19 (21): 2151–2154. Bibcode:1992GeoRL..19.2151L. doi:10.1029/92GL02485.
  62. ^ Quirin Shlermeler (3 March 2005). "Solar wind hammers the ozone layer". News@nature. doi:10.1038/news050228-12.
  63. ^ Adams, Fred C. (2008). "Long-term astrophysicial processes". In Bostrom, Nick; Cirkovic, Milan M. (eds.). Global Catastrophic Risks. Oxford University Press. pp. 33–47.
  64. ^ Neron de Surgey, O.; Laskar, J. (1996). "On the Long Term Evolution of the Spin of the Earth". Astronomy and Astrophysics. 318: 975. Bibcode:1997A&A...318..975N.
  65. ^ "Study: Earth May Collide With Another Planet". Fox News. 11 June 2009. Retrieved 8 September 2011.
  66. ^ Guinan, E. F.; Ribas, I. (2002), "Our Changing Sun: The Role of Solar Nuclear Evolution and Magnetic Activity on Earth's Atmosphere and Climate", in Montesinos, Benjamin; Gimenez, Alvaro; Guinan, Edward F., ASP Conference Proceedings, The Evolving Sun and its Influence on Planetary Environments, Astronomical Society of the Pacific, pp. 85–106, Bibcode2002ASPC..269...85G 
  67. ^ Li, King-Fai; Pahlevan, Kaveh; Kirschvink, Joseph L.; Yung, Yuk L. (June 16, 2009), "Atmospheric pressure as a natural climate regulator for a terrestrial planet with a biosphere", Proceedings of the National Academy of Sciences of the United States of America 106 (24): 9576–9579, doi:10.1073/pnas.0809436106, PMID 19487662, Bibcode2009PNAS..106.9576L 
  68. ^ Brownlee 2010, p. 95.
  69. ^ Kasting, J. F. (June 1988), "Runaway and moist greenhouse atmospheres and the evolution of earth and Venus", Icarus 74 (3): 472–494, doi:10.1016/0019-1035(88)90116-9, PMID 11538226, Bibcode1988Icar...74..472K 
  70. ^ Hecht, Jeff (2 April 1994). "Science: Fiery Future for Planet Earth". New Scientist (1919). p. 14. Retrieved 29 October 2007.
  71. ^ Chyba, C. F.; Jankowski, D. G.; Nicholson, P. D. (1989). "Tidal Evolution in the Neptune-Triton System". Astronomy and Astrophysics. 219: 23. Bibcode:1989A&A...219L..23C.
  72. ^ Cox, J. T.; Loeb, Abraham (2007). "The Collision Between The Milky Way And Andromeda". Monthly Notices of the Royal Astronomical Society. 386 (1): 461–474. arXiv:0705.1170. Bibcode:2008MNRAS.tmp..333C. doi:10.1111/j.1365-2966.2008.13048.x.
  73. ^ NASA (2012-05-31). "NASA's Hubble Shows Milky Way is Destined for Head-On Collision". NASA. Retrieved 2012-10-13.
  74. ^ Dowd, Maureen (29 May 2012). "Andromeda Is Coming!". New York Times. Retrieved 9 January 2014. [NASA's David Morrison] explained that the Andromeda-Milky Way collision would just be two great big fuzzy balls of stars and mostly empty space passing through each other harmlessly over the course of millions of years.
  75. ^ Braine, J.; Lisenfeld, U.; Duc, P. A.; et al. (2004). "Colliding molecular clouds in head-on galaxy collisions". Astronomy and Astrophysics. 418 (2): 419–428. arXiv:astro-ph/0402148. Bibcode:2004A&A...418..419B. doi:10.1051/0004-6361:20035732. Retrieved 2 April 2008.
  76. ^ أ ب ت ث Schroder, K. P.; Connon Smith, Robert (2008). "Distant Future of the Sun and Earth Revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155–163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x.
  77. ^ Powell, David (January 22, 2007), Earth's Moon Destined to Disintegrate, Tech Media Network, http://www.space.com/scienceastronomy/070122_temporary_moon.html, retrieved on 2010-06-01. 
  78. ^ Rybicki, K. R.; Denis, C. (2001). "On the Final Destiny of the Earth and the Solar System". Icarus. 151 (1): 130–137. Bibcode:2001Icar..151..130R. doi:10.1006/icar.2001.6591.
  79. ^ Lorenz, Ralph D.; Lunine, Jonathan I.; McKay, Christopher P. (1997). "Titan under a red giant sun: A new kind of "habitable" moon" (PDF). Geophysical Research Letters. 24 (22): 2905–8. Bibcode:1997GeoRL..24.2905L. doi:10.1029/97GL52843. PMID 11542268. Retrieved 21 March 2008.
  80. ^ Balick, Bruce. "Planetary Nebulae and the Future of the Solar System". University of Washington. Retrieved 23 June 2006.
  81. ^ Kalirai, Jasonjot S.; et al. (March 2008). "The Initial-Final Mass Relation: Direct Constraints at the Low-Mass End". The Astrophysical Journal. 676 (1): 594–609. arXiv:0706.3894. Bibcode:2008ApJ...676..594K. doi:10.1086/527028.
  82. ^ "Universe May End in a Big Rip". CERN Courier. 1 May 2003. Retrieved 22 July 2011.
  83. ^ Vikhlinin, A.; Kravtsov, A.V.; Burenin, R.A.; et al. (2009). "Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints". The Astrophysical Journal. Astrophysical Journal. 692 (2): 1060–1074. arXiv:0812.2720. Bibcode:2009ApJ...692.1060V. doi:10.1088/0004-637X/692/2/1060.
  84. ^ Murray, C.D. & Dermott, S.F. (1999). Solar System Dynamics. Cambridge University Press. p. 184. ISBN 978-0-521-57295-8.
  85. ^ Dickinson, Terence (1993). From the Big Bang to Planet X. Camden East, Ontario: Camden House. pp. 79–81. ISBN 978-0-921820-71-0.
  86. ^ Canup, Robin M.; Righter, Kevin (2000). Origin of the Earth and Moon. The University of Arizona space science series. 30. University of Arizona Press. pp. 176–177. ISBN 978-0-8165-2073-2.
  87. ^ أ ب Loeb, Abraham (2011). "Cosmology with Hypervelocity Stars". Harvard University. 2011: 023. arXiv:1102.0007. Bibcode:2011JCAP...04..023L. doi:10.1088/1475-7516/2011/04/023.
  88. ^ Chown, Marcus (1996). Afterglow of Creation. University Science Books. p. 210.
  89. ^ "The Local Group of Galaxies". University of Arizona. Students for the Exploration and Development of Space. Retrieved 2 October 2009.
  90. ^ Adams, F. C.; Graves, G. J. M.; Laughlin, G. (December 2004). García-Segura, G.; Tenorio-Tagle, G.; Franco, J.; Yorke, H. W. (eds.). "Gravitational Collapse: From Massive Stars to Planets. / First Astrophysics meeting of the Observatorio Astronomico Nacional. / A meeting to celebrate Peter Bodenheimer for his outstanding contributions to Astrophysics: Red Dwarfs and the End of the Main Sequence". Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias). 22: 46–49. Bibcode:2004RMxAC..22...46A. See Fig. 3.
  91. ^ http://www.astroscu.unam.mx/rmaa/RMxAC..22/PDF/RMxAC..22_adams.pdf
  92. ^ "Why the Smallest Stars Stay Small". Sky & Telescope (22). November 1997.
  93. ^ Adams, F. C.; P. Bodenheimer; G. Laughlin (2005). "M dwarfs: planet formation and long term evolution". Astronomische Nachrichten. 326 (10): 913–919. Bibcode:2005AN....326..913A. doi:10.1002/asna.200510440.
  94. ^ Tayler, Roger John (1993). Galaxies, Structure and Evolution (2 ed.). Cambridge University Press. p. 92. ISBN 978-0-521-36710-3.
  95. ^ Barrow, John D.; Tipler, Frank J. (19 May 1988). The Anthropic Cosmological Principle. foreword by John A. Wheeler. Oxford: Oxford University Press. ISBN 978-0-19-282147-8. LC 87-28148. Retrieved 31 December 2009.
  96. ^ Adams, Fred; Laughlin, Greg (1999). The Five Ages of the Universe. New York: The Free Press. pp. 85–87. ISBN 978-0-684-85422-9.
  97. ^ أ ب ت ث ج ح Dyson, Freeman J. (1979). "Time Without End: Physics and Biology in an Open Universe". Reviews of Modern Physics. 51 (3): 447–460. Bibcode:1979RvMP...51..447D. doi:10.1103/RevModPhys.51.447. Retrieved 5 July 2008.
  98. ^ Nishino, Super-K Collaboration, et al. (2009). "Search for Proton Decay via Error no symbol defined → Error no symbol definedError no symbol defined and Error no symbol defined → Error no symbol definedError no symbol defined in a Large Water Cherenkov Detector". Physical Review Letters. 102 (14): 141801. Bibcode:2009PhRvL.102n1801N. doi:10.1103/PhysRevLett.102.141801. PMID 19392425.
  99. ^ أ ب Tyson, Neil de Grasse; Tsun-Chu Liu, Charles; Irion, Robert (2000). One Universe: At Home in the Cosmos. Joseph Henry Press. ISBN 978-0-309-06488-0.
  100. ^ أ ب ت Page, Don N. (1976). "Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole". Physical Review D. 13 (2): 198–206. Bibcode:1976PhRvD..13..198P. doi:10.1103/PhysRevD.13.198. See in particular equation (27).
  101. ^ قالب:Cite arXiv
  102. ^ Tegmark, M (May 2003). "Parallel universes. Not just a staple of science fiction, other universes are a direct implication of cosmological observations". Sci Am. 288 (5): 40–51. arXiv:astro-ph/0302131. Bibcode:2003SciAm.288e..40T. doi:10.1038/scientificamerican0503-40. PMID 12701329.
  103. ^ Max Tegmark (2003). "Parallel Universes". In "Science and Ultimate Reality: from Quantum to Cosmos", honoring John Wheeler's 90th birthday. J. D. Barrow, P.C.W. Davies, & C.L. Harper eds. Cambridge University Press. 288: 40–51. arXiv:astro-ph/0302131. Bibcode:2003SciAm.288e..40T. doi:10.1038/scientificamerican0503-40. PMID 12701329.
  104. ^ M. Douglas, "The statistics of string / M theory vacua", JHEP 0305, 46 (2003). قالب:Arxiv; S. Ashok and M. Douglas, "Counting flux vacua", JHEP 0401, 060 (2004).
  105. ^ Smith, Cameron; Davies, Evan T. (2012). Emigrating Beyond Earth: Human Adaptation and Space Colonization. Springer. p. 258.
  106. ^ Klein, Jan; Takahata, Naoyuki (2002). Where Do We Come From?: The Molecular Evidence for Human Descent. Springer. p. 395.
  107. ^ Carter, Brandon; McCrea, W. H. (1983). "The anthropic principle and its implications for biological evolution". Philosophical Transactions of the Royal Society of London. A310 (1512): 347–363. Bibcode:1983RSPTA.310..347C. doi:10.1098/rsta.1983.0096.
  108. ^ Greenberg, Joseph (1987). Language in the Americas. Stanford University Press. pp. 341–342.
  109. ^ McKay, Christopher P.; Toon, Owen B.; Kasting, James F. (8 August 1991). "Making Mars habitable". Nature. 352 (6335): 489–496. Bibcode:1991Natur.352..489M. doi:10.1038/352489a0.
  110. ^ Kaku, Michio (2010). "The Physics of Interstellar Travel: To one day, reach the stars". mkaku.org. Retrieved 29 August 2010.
  111. ^ Avise, John; D. Walker; G. C. Johns (1998-09-22). "Speciation durations and Pleistocene effects on vertebrate phylogeography" (PDF). Philosophical Transactions of the Royal Society B. 265 (1407): 1707–1712. doi:10.1098/rspb.1998.0492. PMC 1689361. PMID 9787467.
  112. ^ Valentine, James W. (1985). "The Origins of Evolutionary Novelty And Galactic Colonization". In Finney, Ben R.; Jones, Eric M. (eds.). Interstellar Migration and the Human Experience. University of California Press. p. 274.
  113. ^ J. Richard Gott, III (1993). "Implications of the Copernican principle for our future prospects". Nature. 363 (6427): 315–319. Bibcode:1993Natur.363..315G. doi:10.1038/363315a0.
  114. ^ Crawford, I. A. (July 2000). "Where are They? Maybe we are alone in the galaxy after all". Scientific American. Retrieved 20 July 2012.
  115. ^ Bignami, Giovanni F.; Sommariva, Andrea (2013). A Scenario for Interstellar Exploration and Its Financing. Springer. p. 23.
  116. ^ Korycansky, D. G.; Laughlin, Gregory; Adams, Fred C. (2001). "Astronomical engineering: a strategy for modifying planetary orbits". Astrophysics and Space Science. 275: 349–366. doi:10.1023/A:1002790227314. Astrophys.Space Sci.275:349-366,2001.
  117. ^ Korycansky, D. G. (2004). "Astroengineering, or how to save the Earth in only one billion years" (PDF). Revista Mexicana de Astronomía y Astrofísica. 22: 117–120.
  118. ^ "Hurtling Through the Void". Time Magazine. 20 June 1983. Retrieved 5 September 2011.
  119. ^ Glancey, Jonathan (2015-10-01). Concorde: The Rise and Fall of the Supersonic Airliner. Atlantic Books, Limited. ISBN 9781782391081.
  120. ^ "Cornell News: "It's the 25th Anniversary of Earth's First (and only) Attempt to Phone E.T."". Cornell University. 12 November 1999. Archived from the original on 2 August 2008. Retrieved 29 March 2008.
  121. ^ Dave Deamer. "In regard to the email from". Science 2.0. Retrieved 2014-11-14.
  122. ^ "Pioneer 10 Spacecraft Nears 25TH Anniversary, End of Mission". nasa.gov. Retrieved 2013-12-22.
  123. ^ "SPACE FLIGHT 2003 – United States Space Activities". nasa.gov. Retrieved 2013-12-22.
  124. ^ أ ب "Voyager: The Interstellar Mission". NASA. Retrieved 5 September 2011.
  125. ^ "KEO FAQ". keo.org. Retrieved 14 October 2011.
  126. ^ Lasher, Lawrence. "Pioneer Mission Status". NASA. Archived from the original on 8 April 2000. [Pioneer's speed is] about 12 km/s... [the plate etching] should survive recognizable at least to a distance ~ 10 parsecs, and most probably to 100 parsecs.CS1 maint: Unfit url (link)
  127. ^ أ ب "The Pioneer Missions". NASA. Retrieved 5 September 2011.
  128. ^ "LAGEOS 1, 2". NASA. Retrieved 21 July 2012.
  129. ^ Jad Abumrad and Robert Krulwich (12 February 2010). Carl Sagan And Ann Druyan's Ultimate Mix Tape (Radio). National Public Radio.
  130. ^ "The Long Now Foundation". The Long Now Foundation. 2011. Retrieved 21 September 2011.
  131. ^ "Memory of Mankind". Archived from the original on 23 January 2015.
  132. ^ "Human Document Project 2014".
  133. ^ Begtrup, G. E.; Gannett, W.; Yuzvinsky, T. D.; Crespi, V. H.; et al. (13 May 2009). "Nanoscale Reversible Mass Transport for Archival Memory" (PDF). Nano Letters. 9 (5): 1835–1838. Bibcode:2009NanoL...9.1835B. doi:10.1021/nl803800c.
  134. ^ Zhang, J.; Gecevičius, M.; Beresna, M.; Kazansky, P. G. (2014). "Seemingly unlimited lifetime data storage in nanostructured glass" (PDF). 112. Phys. Rev. Lett.: 033901. Bibcode:2014PhRvL.112c3901Z. doi:10.1103/PhysRevLett.112.033901.
  135. ^ Zhang, J.; Gecevičius, M.; Beresna, M.; Kazansky, P. G. (June 2013). "5D Data Storage by Ultrafast Laser Nanostructuring in Glass" (PDF). CLEO: Science and Innovations. Optical Society of America: CTh5D-9.
  136. ^ "Tetrafluoromethane". Toxicology Data Network (TOXNET). United States National Library of Medicine. Retrieved 4 September 2014.
  137. ^ "Time it takes for garbage to decompose in the environment" (PDF). New Hampshire Department of Environmental Services.
  138. ^ Lyle, Paul (2010). Between Rocks And Hard Places: Discovering Ireland's Northern Landscapes. Geological Survey of Northern Ireland.
  139. ^ Weisman, Alan (2007-07-10), The World Without Us, New York: Thomas Dunne Books/St. Martin's Press, pp. 171–172, ISBN 0-312-34729-4, OCLC 122261590 
  140. ^ "Apollo 11 -- First Footprint on the Moon". Student Features. NASA.
  141. ^ Meadows, A. J. (2007). The Future of the Universe. Springer. pp. 81–83.
  142. ^ Weisman, Alan (2007-07-10), The World Without Us, New York: Thomas Dunne Books/St. Martin's Press, p. 182, ISBN 0-312-34729-4, OCLC 122261590 
  143. ^ Zalasiewicz, Jan (2008-09-25), The Earth After Us: What legacy will humans leave in the rocks?, Oxford University Press , Review in Stanford Archaeolog
  144. ^ أ ب ت ث ج ح خ د ذ Meeus, J. & Vitagliano, A. (2004). "Simultaneous Transits" (PDF). Journal of the British Astronomical Association. 114 (3). Retrieved 2 August 2016.
  145. ^ "Why is Polaris the North Star?". NASA. Retrieved 10 April 2011.
  146. ^ أ ب Plait, Phil (2002). Bad Astronomy: Misconceptions and Misuses Revealed, from Astrology to the Moon Landing "Hoax". John Wiley and Sons. pp. 55–56.
  147. ^ Falkner, David E. (2011). The Mythology of the Night Sky. Springer. p. 116.
  148. ^ Calculation by the Stellarium application version 0.10.2, http://www.stellarium.org, retrieved on 2009-07-28 
  149. ^ Kieron Taylor (1 March 1994). "Precession". Sheffield Astronomical Society. Retrieved 2013-08-06.
  150. ^ Falkner, David E. (2011). The Mythology of the Night Sky. Springer. p. 102.
  151. ^ Komzsik, Louis (2010). Wheels in the Sky: Keep on Turning. Trafford Publishing. p. 140.
  152. ^ Laskar, J.; et al. (1993). "Orbital, Precessional, and Insolation Quantities for the Earth From ?20 Myr to +10 Myr". Astronomy and Astrophysics. 270: 522–533. Bibcode:1993A&A...270..522L.
  153. ^ Laskar; et al. "Astronomical Solutions for Earth Paleoclimates". Institut de mécanique céleste et de calcul des éphémérides. Retrieved 20 July 2012.
  154. ^ Aldo Vitagliano (2011). "The Solex page". University degli Studi di Napoli Federico II. Retrieved 20 July 2012.
  155. ^ James, N.D (1998). "Comet C/1996 B2 (Hyakutake): The Great Comet of 1996". Journal of the British Astronomical Association. 108: 157. Bibcode:1998JBAA..108..157J.
  156. ^ Horizons output. "Barycentric Osculating Orbital Elements for Comet C/1999 F1 (Catalina)". Retrieved 2011-03-07.
  157. ^ Borkowski, K.M. (1991). "The Tropical Calendar and Solar Year". J. Royal Astronomical Soc. of Canada. 85 (3): 121–130. Bibcode:1991JRASC..85..121B.
  158. ^ Bromberg, Irv. "The Rectified Hebrew Calendar".
  159. ^ Strous, Louis (2010). "Astronomy Answers: Modern Calendars". University of Utrecht. Retrieved 14 September 2011.
  160. ^ Richards, Edward Graham (1998). Mapping time: the calendar and its history. Oxford University Press. p. 93.
  161. ^ "Julian Date Converter". US Naval Observatory. Retrieved 20 July 2012.
  162. ^ "Permanent Markers Implementation Plan" (PDF). United States Department of Energy. August 30, 2004. Archived (PDF) from the original on 28 September 2006.
  163. ^ Time: Disasters that Shook the World. New York City: Time Home Entertainment. 2012. ISBN 1-60320-247-1.
  164. ^ أ ب Fetter, Steve (March 2009). "How long will the world's uranium supplies last?".
  165. ^ أ ب Ongena, J; G. Van Oost. "Energy for future centuries - Will fusion be an inexhaustible, safe and clean energy source?" (PDF). Fusion Science and Technology. 2004. 45 (2T): 3–14.
  166. ^ Cohen, Bernard L. (January 1983). "Breeder Reactors: A Renewable Energy Source" (PDF). American Journal of Physics. 51 (1): 75. Bibcode:2005BGD.....2.1665F. doi:10.1119/1.13440.

ببليوگرافيا