الحوسبة الكمومية

(تم التحويل من حوسبة كمومية)
كرة بلوخ هي تمثيل للكيوبت، لبنة البناء الأساسية في الحاسوبات الكمومية.
ميكانيكا الكم
مقدمة ...

الصياغة الرياضية لميكانيك الكم

 ع  ن  ت


الحاسوب الكمومي Quantum Computer، هو أي وسيلة تستثمر مبادئ ميكانيكا الكم وظواهرها، مثل حالة التراكب الكمومي Quantum Superposition والتشابك الكمومي Quantum Entanglement ، للقيام بمعالجة البيانات.

لا تختلف الحواسيب الكمومية عن الحواسيب المبنية على الترانزستور فقط في التقانة المستخدمة، بل إنها تعتمد نموذجاً آخر للحوسبة غير نمودج آلة تورنگ، وهو نموذج آلة تورنگ الكمومية أو أحياناً يطلق عليها الحاسوب الكمومي الكوني.

في 8 يناير 2019، طرحت آي بي إم أول حاسوب كمومي تجاري، IBM Q System One[1][2][3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

نظرة إجمالية

ليس الشيء المميز في الحواسيب الكمومية هو القدرة الفائقة في التخزين أو المعالجة التقليدية بل إنها القدرة على القيام بعمليات معالجة متوازية، وفي الوقت ذاته.

كل الحواسيب منذ نشوئها، وحتى اليوم تعتمد على النموذج النظري الحاسوبي نفسه، وهو نموذج آلة تورنگالذي يتضمن آلة تقرأ شريطاً مثقباً بشكل متتال، فيمثل الشريط الذاكرة، ويمثل تتابع الثقوب تتابع الأصفار والواحدات، وهذا هو نمط التخزين الثنائي.

تستخدم الحواسيب الكمومية ظواهر غريبة في عالم الفيزياء. هذه الحواسيب ليس بإمكانها فقط تخزين الواحد، أو الصفر، بل تخزين الواحد والصفر في نفس الوقت. لنأخذ بتة عادية. يمكن لهذه البتة أن تخزّن أحد القيمتين: 1 أو 0. أما بالنسبة للبتة الكمومية أو كما تسمى باللغة الإنكليزية Qubit فبإمكانها تخزين الواحد والصفر في الوقت ذاته.

لنأخذ ثلاث بتات عادية. يمكنها تخزين أحد ثماني الأرقام من الصفر إلى السبعة، أما البتة الكمومية فبإمكانها تخزين الأرقام الثماني في الوقت ذاته.

ليس المهم هنا قدرة التخزين الكبيرة. لنحاول أن تتخيل أن هذه البتات الكمومية الثلاثة تستطيع القيام بثماني عمليات في الوقت ذاته، بدل عملية واحدة في الوقت نفسه للبتات العادية. هنا تكمن قوة الحواسيب الكمومية، فقوة المعالجة تزداد بشكل أسي (2^n) بالازدياد الخطي لحجم النظام. هذا الأمر أدى إلى ظهور ما يسمى بالخوارزميات الكمومية والتي تستطيع إنجاز العديد من العمليات الطويلة بزمن قصير.

قد يكون من المفيد الإشارة إلى بعض إمكانات السرعة لإحدى الخوارزميات الكمومية، وهي خوارزمية گروڤر Grover. لنتخيل قاعدة بيانات مؤلفة من مليون سجل. إن عدد العمليات الوسطي لبحث واحد، وباستخدام الوسائل المتاحة، هو نصف مليون عملية، أي n/2. لكن وباستخدام الخوارزمية السابقة فمتوسط العمليات اللازم للقيام ببحث هو جذر n، أي 1000 عملية فقط من أجل مثالنا.


مبادئ التشغيل

A quantum computer with a given number of qubits is fundamentally different from a classical computer composed of the same number of classical bits. For example, representing the state of an n-qubit system on a classical computer requires the storage of 2n complex coefficients, while to characterize the state of a classical n-bit system it is sufficient to provide the values of the n bits, that is, only n numbers. Although this fact may seem to indicate that qubits can hold exponentially more information than their classical counterparts, care must be taken not to overlook the fact that the qubits are only in a probabilistic superposition of all of their states. This means that when the final state of the qubits is measured, they will only be found in one of the possible configurations they were in before the measurement. It is generally incorrect to think of a system of qubits as being in one particular state before the measurement. Since the fact that they were in a superposition of states before the measurement was made directly affects the possible outcomes of the computation.

الكيوبتات مكونة من جسيمات محكومة ووسائل التحكم (مثل الأجهزة التي تصطاد الجسيمات وتحولها من حالة إلى أخرى).[4]

To better understand this point, consider a classical computer that operates on a three-bit register. If the exact state of the register at a given time is not known, it can be described as a probability distribution over the different three-bit strings 000, 001, 010, 011, 100, 101, 110, and 111. If there is no uncertainty over its state, then it is in exactly one of these states with probability 1. However, if it is a probabilistic computer, then there is a possibility of it being in any one of a number of different states.

The state of a three-qubit quantum computer is similarly described by an eight-dimensional vector (or a one dimensional vector with each vector node holding the amplitude and the state as the bit string of qubits). Here, however, the coefficients are complex numbers, and it is the sum of the squares of the coefficients' absolute values, , that must equal 1. For each , the absolute value squared gives the probability of the system being found in the -th state after a measurement. However, because a complex number encodes not just a magnitude but also a direction in the complex plane, the phase difference between any two coefficients (states) represents a meaningful parameter. This is a fundamental difference between quantum computing and probabilistic classical computing.[5]

If you measure the three qubits, you will observe a three-bit string. The probability of measuring a given string is the squared magnitude of that string's coefficient (i.e., the probability of measuring 000 = , the probability of measuring 001 = , etc.). Thus, measuring a quantum state described by complex coefficients gives the classical probability distribution and we say that the quantum state "collapses" to a classical state as a result of making the measurement. To explain how the quantum state "collapses" to a classical state , let's consider a mathematical problem which is called the light switch game [1] , that illustrates why the quantum computing is more efficient in solving certain problems

An eight-dimensional vector can be specified in many different ways depending on what basis is chosen for the space. The basis of bit strings (e.g., 000, 001, …, 111) is known as the computational basis. Other possible bases are unit-length, orthogonal vectors and the eigenvectors of the Pauli-x operator. Ket notation is often used to make the choice of basis explicit. For example, the state in the computational basis can be written as:

where, e.g.,

The computational basis for a single qubit (two dimensions) is and .

Using the eigenvectors of the Pauli-x operator, a single qubit is and .

التشغيل

While a classical 3-bit state and a quantum 3-qubit state are each eight-dimensional vectors, they are manipulated quite differently for classical or quantum computation. For computing in either case, the system must be initialized, for example into the all-zeros string, , corresponding to the vector (1,0,0,0,0,0,0,0). In classical randomized computation, the system evolves according to the application of stochastic matrices, which preserve that the probabilities add up to one (i.e., preserve the L1 norm). In quantum computation, on the other hand, allowed operations are unitary matrices, which are effectively rotations (they preserve that the sum of the squares add up to one, the Euclidean or L2 norm). (Exactly what unitaries can be applied depend on the physics of the quantum device.) Consequently, since rotations can be undone by rotating backward, quantum computations are reversible. (Technically, quantum operations can be probabilistic combinations of unitaries, so quantum computation really does generalize classical computation. See quantum circuit for a more precise formulation.)

صورة توضيحية للفرق بين البت والكيوبت



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

الكيوبت

يستخدم الحاسوب الكمومي بعض الظواهر التي تكاد تكون غامضة من ميكانيكا الكم لتحقيق طفرات هائلة في قدرات المعالجة. حيث تتمتع الآلات الكمومية بقدرات واعدة للتفوق على أكثر الحواسيب الفائقة التي نراها اليوم- أو سنراها مستقبلاً- قدرة.

لكن هذه الآلات لن تقضي على وجود الحواسيب التقليدية، فاستخدام الآلات الكلاسيكية سيظل الحل الأسهل والأكثر توفيراً للتكاليف لمعالجة معظم المشاكل. لكن الحواسيب الكمومية لديها إمكانيات واعدة لتحقيق تقدم بارز في مجالات متنوعة، ابتداءً بعلم المواد، وانتهاءً بأبحاث المستحضرات الدوائية. تقوم الشركات حالياً بتجريب هذه الحواسيب لتطوير أشياء مثل بطاريات أخف وزناً وأكثر فعالية للسيارات الكهربائية، وللمساعدة في تصنيع عقاقير جديدة. [6] يكمن سر القدرات العالية للحواسيب الكمومية في قدرتها على توليد اللبنات الكومية (أو ما يسمى الكيوبتات) والتعامل معها.

تستخدم حواسيب اليوم البتات (وحدة البت) وهي تدفق من النبضات الكهربائية أو الضوئية التي تمثل الوحدان 1 والأصفار 0. فكل شيء من تغريداتك على تويتر، إلى رسالتك الإلكترونية، إلى أغانيك على آيتيونز ومقاطع الفيديو على يوتيوب، كل ذلك هو في الأساس عبارة عن سلاسل طويلة من هذه الأرقام. من الناحية الاخرى، تستخدم الحواسيب الكمومية الكيوبتات، وهي عادة ما تكون جسيمات دون ذرية مثل الإلكترونيات والفوتونات، ويمثل إنتاج وإدارة الكيوبتات تحدياً علمياً وهندسياً. إن بعض الشركات مثل آي بي إم، جوجل، وريجتي كومبيوتينج، تستخدم دارات فائقة الناقلية يتم تبريدها إلى درجات حرارة أشد برودة من الفضاء العميق. في حين تقوم شركات أخرى مثل أيون-كيو، بحصر ذرات منفردة داخل حقول كهرومغناطيسية على شرائح السيليكون داخل حجرات فائقة التفريغ، في كلا الحالتين، فإن الهدف هو عزل الكيوبتات في حالة كمومية مضبوطة. تتمتع الكيوبتات ببعض الخصائص الكمومية غريبة الاطوار، هذا يعني أنه يمكن لمجموعة متصلة منها أن توفر قدرة معالجة أعلى بكثير مما يوفره نفس العدد من البتات الثنائية، إحدى هذه الخصائص تعرف باسم "التراكب"، والخاصية الأخرى تسمى "التشابك".

التراكب الكمي

يمكن للكيوبتات أن تمثل عدداً كبيراً من التركيبات المحتملة من الوحدات 1 أو الأصفار 0 في الوقت نفسه، هذه القدرة على اتخاذ حالات متعددة في الوقت نفسه تسمى بالتراكب. لوضع الكيوبتات في حالة من التراكب، يقوم الباحثون بمعالجتها باستخدام حزمات من أشعة الليزر أو الموجات المكروية.

بفضل هذه الظاهرة غير المنطقية، يمكن للحاسوب الكمومي باستخدام عدة كيوبتات في حالة من التراكب أن يعالج عدداً هائلاً من المخرجات المحتملة بشكل متزامن، لا تظهر النتيجة النهائية للعملية الحسابية إلا بعد أن يتم قياس الكيوبتات، والذي يؤدي على الفور إلى "إنهيار" الحالة الكمومية لتأخذ إما القيمة 1 أو القيمة 0.


التشابك الكمي

يمكن للباحثين أن يولدوا أزواجاً من الكيوبتات "المتشابكة"، ما يعني ان كلا عنصري الزوج الواحد يمكنهما التواجد في حالة كمومية واحدة، حيث أن تغيير حالة أحد الكيوبتين يؤدي على الفور إلى تغير حالة الكيوبت الآخر بطريقة يمكن التنبؤ بها. يحدث هذا الأمر حتى لو كان هناك مسافات شاسعة تفصل بين عناصر الأزواج. لا أحد يعلم حقيقة كيف يجري التشابك أو ما الذي يتسبب بحدوثه، حيث أنه حير أينشتاين الذي اشتهر بوصفه على أنه "عمل شبحي يجري عن بعد". ولكنه ظاهرة أساسية تكمن وراء قوة الحواسيب الكمومية. ففي الحاسوب التقليدي، تؤدي مضاعفة عدد البتات المستخدمة إلى مضاعفة قدرته على المعالجة، ولكن بفضل ظاهرة التشابك، فإن إضافة كيوبتات إضافية إلى آلة كمومية يتسبب بزيادة هائلة في قدرتها على معالجة الأرقام. تستخدم الحواسيب الكمومية الكيوبتات المتشابكة في نوع من السلسلة التعاقبية الكمومية لتقوم بأعمالها السحرية، إن قدرة الآلات على تسريع العمليات الحسابية باستخدام خوارزميات كمومية مصممة بشكل خاص هي السبب في وجود ضجة كبيرة حول إمكانياتها. هذا هو الخبر السار من الامر، أما الخبر السيء، فهو أن هذه الآلات الكمومية أكثر عرضة لارتكاب الأخطاء مقارنة بالحواسيب الكلاسيكية نتيجة زوال الترابط الكمي.

زوال الترابط الكمي

إن تفاعل الكيوبتات مع بيئتها المحيطة بطريق تؤدي إلى تراجع سلوكها الكمومي واختفائه في نهاية المطاف يعرف باسم "زوال الترابط الكمي". فحالتها الكمومية بالغة الحساسية، لأن أقل اهتزاز أو تغير في درجة الحرارة- وهي اضطرابات تعرف باسم "الضجيج" في مصطلحات ميكانيكا الكم- يمكنه أن يتسبب بإخراجها من حالة التراكب قبل أن تنجز عملها بشكل صحيح. هذا ما يدفع الباحثين إلى بذل قصارى جهدهم لحماية الكيوبتات من العالم الخارجي داخل تلك الثلاجات فائقة التبريد والحجرات فائقة التفريغ.

ولكن وعلى الرغم من الجهود التي يبذلونها، لا يزال الضجيج يتسبب بتسلل الكثير من الأخطاء إلى العمليات الحسابية. يمكن لخوارزميات الكم الذكية أن تقوم بعضاً من هذه الأخطاء، كما أن إضافة المزيد من الكيوبتات يلعب دوراً مساعداً أيضاً. مع ذلك، فإنه من المرجح أن يتطلب الامر استخدام الآلاف من الكيوبتات المعيارية لإنشاء كيوبت واحد موثوق للغاية، يعرف باسم "الكيوبت المنطقي". سيؤدي هذا إلى استنزاف الكثير من القدرات الحسابية للحاسوب الكمومي.

وهناك تمكن المشكلة، فحتى الآن، لم يتمكن الباحثون من تمكن أكث رمن 128 كيوبت معياري. لذلك لا يزال أمامنا العديد من السنوات قبل أن نحظى بحواسيب كمومية يمكنها أن تلعب دوراً مجدياً على نطاق واسع.

لكن هذا لم يقلل من آمال رواد هذا المجال في أن يكونوا أول من يبرهن على "التفوق الكمومي".


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

القدرات

التشفير

Integer factorization, which underpins the security of public key cryptographic systems, is believed to be computationally infeasible with an ordinary computer for large integers if they are the product of few prime numbers (e.g., products of two 300-digit primes).[7] By comparison, a quantum computer could efficiently solve this problem using Shor's algorithm to find its factors. This ability would allow a quantum computer to break many of the cryptographic systems in use today, in the sense that there would be a polynomial time (in the number of digits of the integer) algorithm for solving the problem. In particular, most of the popular public key ciphers are based on the difficulty of factoring integers or the discrete logarithm problem, both of which can be solved by Shor's algorithm. In particular, the RSA, Diffie–Hellman, and elliptic curve Diffie–Hellman algorithms could be broken. These are used to protect secure Web pages, encrypted email, and many other types of data. Breaking these would have significant ramifications for electronic privacy and security.

البحث الكمومي

Besides factorization and discrete logarithms, quantum algorithms offering a more than polynomial speedup over the best known classical algorithm have been found for several problems,[8] including the simulation of quantum physical processes from chemistry and solid state physics, the approximation of Jones polynomials, and solving Pell's equation. No mathematical proof has been found that shows that an equally fast classical algorithm cannot be discovered, although this is considered unlikely.[9] For some problems, quantum computers offer a polynomial speedup. The most well-known example of this is quantum database search, which can be solved by Grover's algorithm using quadratically fewer queries to the database than that are required by classical algorithms. In this case, the advantage is not only provable but also optimal, it has been shown that Grover's algorithm gives the maximal possible probability of finding the desired element for any number of oracle lookups. Several other examples of provable quantum speedups for query problems have subsequently been discovered, such as for finding collisions in two-to-one functions and evaluating NAND trees.

المحاكاة الكمومية

Since chemistry and nanotechnology rely on understanding quantum systems, and such systems are impossible to simulate in an efficient manner classically, many believe quantum simulation will be one of the most important applications of quantum computing.[10] Quantum simulation could also be used to simulate the behavior of atoms and particles at unusual conditions such as the reactions inside a collider.[11]

التلدين الكمومي والاستمثال الأدياباتي

Adiabatic quantum computation relies on the adiabatic theorem to undertake calculations. A system is placed in the ground state for a simple Hamiltonian, which is slowly evolved to a more complicated Hamiltonian whose ground state represents the solution to the problem in question. The adiabatic theorem states that if the evolution is slow enough the system will stay in its ground state at all times through the process.

حل المعادلات الخطية

The Quantum algorithm for linear systems of equations or "HHL Algorithm", named after its discoverers Harrow, Hassidim, and Lloyd, is expected to provide speedup over classical counterparts.[12]

تفوق الكمومية

التفوق الكمومي المرحلة التي يمكن فيها للحاسوب الكمومي أن ينجز حساباً رياضياً يثبت أنه يتجاوز قدرات أقوى الحواسيب الفائقة. لا يزال من غير الواضح بالضبط ما هو عد الكيوبتات المطلوب لتحقيق ذلك، لأن الباحثين يوصالون البحث عن خوارزميات جديدة لتعزيز أداء الآلات الكلاسيكية، كما أن المكونات المادية الخاصة بالحوسبة الفائقة مستمرة في التحسن. ولكن الباحثين والشركات يعملون جاهداً لتحقيق اللقب (التفوق الكمومي)، عبر إجراء الاختبارات مقارنة بعدد من أقوى الحواسيب الفائقة في العالم.

هناك الكثير من النقاش الذي يجري في عالم الأبحاث حول مدى أهمية تحقيق هذا الإنجاز. وبدلاً من إنتظار الإعلان عن التفوق، فقد بدأت الشركات في الواقع بإجراء التجارب بإستخدام حواسيب كمومية تم تصنيعها من قبل شركات مثل آي بي إم، ريجيتي، والشركة الكندية دي-ويف، كما أن هناك شركات صينية مثل علي بابا توفر إمكانية الوصول إلى الآلات الكمومية، وتقوم بعض الشركات بشراء الحواسيب الكمومية، في حين تستخدم شركات أخرى الحواسيب الكمومية المتاحة عبر خدمات الحوسبة السحابية.

العقبات

There are a number of technical challenges in building a large-scale quantum computer, and thus far quantum computers have yet to solve a problem faster than a classical computer. David DiVincenzo, of IBM, listed the following requirements for a practical quantum computer:[13]

  • scalable physically to increase the number of qubits;
  • qubits that can be initialized to arbitrary values;
  • quantum gates that are faster than decoherence time;
  • universal gate set;
  • qubits that can be read easily.

التطورات

نماذج الحوسبة الكمومية

There are a number of quantum computing models, distinguished by the basic elements in which the computation is decomposed. The four main models of practical importance are:

The quantum Turing machine is theoretically important but the direct implementation of this model is not pursued. All four models of computation have been shown to be equivalent; each can simulate the other with no more than polynomial overhead.

الإنجازات الفيزيائية

For physically implementing a quantum computer, many different candidates are being pursued, among them (distinguished by the physical system used to realize the qubits):

A large number of candidates demonstrates that the topic, in spite of rapid progress, is still in its infancy. There is also a vast amount of flexibility.

خط زمني

In 1959 Richard Feynman in his lecture "There's Plenty of Room at the Bottom" states the possibility of using quantum effects for computation.

In 1980 Paul Benioff described quantum mechanical Hamiltonian models of computers[32] and the Russian mathematician Yuri Manin motivated the development of quantum computers.[33]

In 1981, at a conference co-organized by MIT and IBM, physicist Richard Feynman urged the world to build a quantum computer. He said, "Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly, it's a wonderful problem because it doesn't look so easy."[34]

In 1984, BB84 is published, the world's first quantum cryptography protocol by IBM scientists Charles Bennett and Gilles Brassard.

In 1993, an international group of six scientists, including Charles Bennett, showed that perfect quantum teleportation is possible[35] in principle, but only if the original is destroyed.

In 1994 Peter Shor, at AT&T's Bell Labs discovered an important quantum algorithm, which allows a quantum computer to factor large integers exponentially much faster than the best known classical algorithm. Shor's algorithm can theoretically break many of the public-key cryptosystems in use today.[36] Its invention sparked a tremendous interest in quantum computers.

In 1996, The DiVincenzo's criteria are published which is a list of conditions that are necessary for constructing a quantum computer proposed by the theoretical physicist David P. DiVincenzo in his 2000 paper "The Physical Implementation of Quantum Computation".

In 2001, researchers demonstrated Shor's algorithm to factor 15 using a 7-qubit NMR computer.[37]

In 2005, researchers at the University of Michigan built a semiconductor chip ion trap. Such devices from standard lithography may point the way to scalable quantum computing.[38]

In 2009, researchers at Yale University created the first solid-state quantum processor. The two-qubit superconducting chip had artificial atom qubits made of a billion aluminum atoms that acted like a single atom that could occupy two states.[39][40]

A team at the University of Bristol also created a silicon chip based on quantum optics, able to run Shor's algorithm.[41] Further developments were made in 2010.[42] Springer publishes a journal (Quantum Information Processing) devoted to the subject.[43]

In February 2010, Digital Combinational Circuits like an adder, subtractor etc. are designed with the help of Symmetric Functions organized from different quantum gates.[44][45]

In April 2011, a team of scientists from Australia and Japan made a breakthrough in quantum teleportation. They successfully transferred a complex set of quantum data with full transmission integrity, without affecting the qubits' superpositions.[46][47]

Photograph of a chip constructed by D-Wave Systems Inc. Mounted and wire-bonded in a sample holder. The D-Wave processor is designed to use 128 superconducting logic elements that exhibit controllable and tunable coupling to perform operations.

In 2011, D-Wave Systems announced the first commercial quantum annealer, the D-Wave One, claiming a 128 qubit processor. On May 25, 2011, Lockheed Martin agreed to purchase a D-Wave One system.[48] Lockheed and the University of Southern California (USC) will house the D-Wave One at the newly formed USC Lockheed Martin Quantum Computing Center.[49] D-Wave's engineers designed the chips with an empirical approach, focusing on solving particular problems. Investors liked this more than academics, who said D-Wave had not demonstrated they really had a quantum computer. Criticism softened after a D-Wave paper in Nature, that proved the chips have some quantum properties.[50][51] Two published papers have suggested that the D-Wave machine's operation can be explained classically, rather than requiring quantum models.[52][53] Later work showed that classical models are insufficient when all available data is considered.[54] Experts remain divided on the ultimate classification of the D-Wave systems though their quantum behavior was established concretely with a demonstration of entanglement.[55]

During the same year, researchers at the University of Bristol created an all-bulk optics system that ran a version of Shor's algorithm to successfully factor 21.[56]

In September 2011 researchers proved quantum computers can be made with a Von Neumann architecture (separation of RAM).[57]

In November 2011 researchers factorized 143 using 4 qubits.[58]

In February 2012 IBM scientists said that they had made several breakthroughs in quantum computing with superconducting integrated circuits.[59]

In April 2012 a multinational team of researchers from the University of Southern California, Delft University of Technology, the Iowa State University of Science and Technology, and the University of California, Santa Barbara, constructed a two-qubit quantum computer on a doped diamond crystal that can easily be scaled up and is functional at room temperature. Two logical qubit directions of electron spin and nitrogen kernels spin were used, with microwave impulses. This computer ran Grover's algorithm generating the right answer from the first try in 95% of cases.[60]

In September 2012, Australian researchers at the University of New South Wales said the world's first quantum computer was just 5 to 10 years away, after announcing a global breakthrough enabling the manufacture of its memory building blocks. A research team led by Australian engineers created the first working qubit based on a single atom in silicon, invoking the same technological platform that forms the building blocks of modern-day computers.[61][62]

In October 2012, Nobel Prizes were presented to David J. Wineland and Serge Haroche for their basic work on understanding the quantum world, which may help make quantum computing possible.[63][64]

In November 2012, the first quantum teleportation from one macroscopic object to another was reported by scientists at the University of Science and Technology of China in Hefei.[65][66]

In December 2012, the first dedicated quantum computing software company, 1QBit was founded in Vancouver, BC.[67] 1QBit is the first company to focus exclusively on commercializing software applications for commercially available quantum computers, including the D-Wave Two. 1QBit's research demonstrated the ability of superconducting quantum annealing processors to solve real-world problems.[68]

In February 2013, a new technique, boson sampling, was reported by two groups using photons in an optical lattice that is not a universal quantum computer but may be good enough for practical problems. Science Feb 15, 2013

In May 2013, Google announced that it was launching the Quantum Artificial Intelligence Lab, hosted by NASA's Ames Research Center, with a 512-qubit D-Wave quantum computer. The USRA (Universities Space Research Association) will invite researchers to share time on it with the goal of studying quantum computing for machine learning.[69] Google added that they had "already developed some quantum machine learning algorithms" and had "learned some useful principles", such as that "best results" come from "mixing quantum and classical computing".[69]

In early 2014 it was reported, based on documents provided by former NSA contractor Edward Snowden, that the U.S. National Security Agency (NSA) is running a $79.7 million research program (titled "Penetrating Hard Targets") to develop a quantum computer capable of breaking vulnerable encryption.[70]

In 2014, a group of researchers from ETH Zürich, USC, Google ,and Microsoft reported a definition of quantum speedup, and were not able to measure quantum speedup with the D-Wave Two device, but did not explicitly rule it out.[71][72]

In 2014, researchers at University of New South Wales used silicon as a protectant shell around qubits, making them more accurate, increasing the length of time they will hold information, and possibly making quantum computers easier to build.[73]

In April 2015 IBM scientists claimed two critical advances towards the realization of a practical quantum computer. They claimed the ability to detect and measure both kinds of quantum errors simultaneously, as well as a new, square quantum bit circuit design that could scale to larger dimensions.[74]

In October 2015, QuTech successfully conducts the Loophole-free Bell inequality violation test using electron spins separated by 1.3 kilometres.[75]

In October 2015 researchers at the University of New South Wales built a quantum logic gate in silicon for the first time.[76]

In December 2015 NASA publicly displayed the world's first fully operational $15-million quantum computer made by the Canadian company D-Wave at the Quantum Artificial Intelligence Laboratory at its Ames Research Center in California's Moffett Field. The device was purchased in 2013 via a partnership with Google and Universities Space Research Association. The presence and use of quantum effects in the D-Wave quantum processing unit is more widely accepted.[77] In some tests, it can be shown that the D-Wave quantum annealing processor outperforms Selby’s algorithm.[78] Only two of this computer have been made so far.

In May 2016, IBM Research announced[79] that for the first time ever it is making quantum computing available to members of the public via the cloud, who can access and run experiments on IBM’s quantum processor. The service is called the IBM Quantum Experience. The quantum processor is composed of five superconducting qubits and is housed at the IBM T. J. Watson Research Center in New York.

In August 2016, scientists at the University of Maryland successfully built the first reprogrammable quantum computer.[80]

In October 2016 Basel University described a variant of the electron-hole based quantum computer, which instead of manipulating electron spins uses electron holes in a semiconductor at low (mK) temperatures which are a lot less vulnerable to decoherence. This has been dubbed the "positronic" quantum computer as the quasi-particle behaves like it has a positive electrical charge.[81]

In March 2017, IBM announced an industry-first initiative to build commercially available universal quantum computing systems called IBM Q. The company also released a new API (Application Program Interface) for the IBM Quantum Experience that enables developers and programmers to begin building interfaces between its existing five quantum bit (qubit) cloud-based quantum computer and classical computers, without needing a deep background in quantum physics.

In May 2017, IBM announced[82] that it has successfully built and tested its most powerful universal quantum computing processors. The first is a 16 qubit processor that will allow for more complex experimentation than the previously available 5 qubit processor. The second is IBM's first prototype commercial processor with 17 qubits and leverages significant materials, device, and architecture improvements to make it the most powerful quantum processor created to date by IBM.

In July 2017, a group of U.S. researchers announced a quantum simulator with 51 qubits. The announcement was made by Mikhail Lukin of Harvard University at the International Conference on Quantum Technologies in Moscow.[83] A quantum simulator differs from a computer. Lukin’s simulator was designed to solve one equation. Solving a different equation would require building a new system. A computer can solve many different equations.

In September 2017, IBM Research scientists use a 7 qubit device to model the largest molecule,[84] Beryllium hydride, ever by a quantum computer. The results were published as the cover story in the peer-reviewed journal Nature.

In October 2017, IBM Research scientists successfully "broke the 49-qubit simulation barrier" and simulated 49- and 56-qubit short-depth circuits, using the Lawrence Livermore National Laboratory's Vulcan supercomputer, and the University of Illinois' Cyclops Tensor Framework (originally developed at the University of California). The results were published in arxiv.[85]

In November 2017, the University of Sydney research team in Australia successfully made a microwave circulator, an important quantum computer part, 1000 times smaller than a conventional circulator by using topological insulators to slow down the speed of light in a material.[86]

In December 2017, IBM announced[87] its first IBM Q Network clients. The companies, universities, and labs to explore practical quantum applications, using IBM Q 20 qubit commercial systems, for business and science include: JPMorgan Chase, Daimler AG, Samsung, JSR Corporation, Barclays, Hitachi Metals, Honda, Nagase, Keio University, Oak Ridge National Lab, Oxford University and University of Melbourne.

In December 2017, Microsoft released a preview version of a "Quantum Development Kit".[88] It includes a programming language, Q#, which can be used to write programs that are run on an emulated quantum computer.

In 2017 D-Wave reported to start selling a 2000 qubit quantum computer.[89]

In late 2017 and early 2018 IBM,[90] Intel,[91] and Google[92] each reported testing quantum processors containing 50, 49, and 72 qubits, respectively, all realized using superconducting circuits. By number of qubits, these circuits are approaching the range in which simulating their quantum dynamics is expected to become prohibitive on classical computers, although it has been argued that further improvements in error rates are needed to put classical simulation out of reach.[93]

In February 2018, scientists reported, for the first time, the discovery of a new form of light, which may involve polaritons, that could be useful in the development of quantum computers.[94][95]

In February 2018, QuTech reported successfully testing a silicon-based two-spin-qubits quantum processor.[96]

In June 2018, Intel begins testing silicon-based spin-qubit processor, manufactured in the company's D1D Fab in Oregon.[97]

In July 2018, a team led by the University of Sydney has achieved the world's first multi-qubit demonstration of a quantum chemistry calculation performed on a system of trapped ions, one of the leading hardware platforms in the race to develop a universal quantum computer.[98]

العلاقة بنظرية التعقد الحاسوبية

العلاقة المشتبه فيها بين BQP وفراغات المشاكل الأخرى.[99]


التطبيقات المقترحة

إن أحد أكثر التطبيقات الواعدة للحواسيب الكمومية هو محاكاة سلوك المادة وصولاً إلى المستوى الجزيئي. فشركات تصنيع السيارات مثل فولكس‌ڤاگن ودايملر تستخدم حواسيب كمومية لمحاكاة التركيب الكيميائي لبطاريات السيارات الكهربائية بهدف مساعدتها على إيجاد طرق جيدة لتحسين أدائها. وتقوم شركات مستحضرات الأدوية بإستخدام لتحليل ومقارنة المركبات التي يمكن أن تقودها إلى إنتاج عقارات جديدة.

كما وتعد هذه الآلات رائعة أيضاً بالنسبة لمسائل البحث عن الحلول الأمثلية، لأنها قادرة على معالجة عدد هائل من الحلول المحتملة بسرعات خارقة. فشركات إيرباص على سبيل المثال تستخدم هذه الآلات لتساعدها في حساب مسارات الصعود والهبوط الأكثر كفاءة في استهلاك الوقود بالنسبة للطائرات. وقد كشفت فولكس‌ڤاگن الستار عن خدمة تقوم بحساب الطرق الأمثلية للحافلات وسيارات الأجرة ضمن المدن لتخفيض الازدحام إلى الحد الأدنى، كما أن بعض الباحثين يعتقدون أيضاً أنه يمكن إستخدام الآلات الكمومية في تسريع الذكاء الاصطناعي.

قد يستغرق الأمر بضع سنوات قبل أن تتمكن الحواسيب الكمومية من بلوغ أقصى إمكانياتها، حيث تواجه الجامعات والشركات التي تعمل على تطويرها نقصاً في عدد الباحثين من أصحاب المهارات العالية في هذا المجال، ونقصاً في عدد الموردين لبعض المكونات الأساسية. ولكن إذا تمكنت هذه الآلات الحاسوبية الجديدة الغريبة من الإيفاء بوعودها، فقد تتمكن من تحويل صناعات بأكملها، وتعزيز الإبتكار العالمي بشكل كبير.

انظر أيضاً

خوارزميات كمومية

الهامش

  1. ^ "IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans". HPCwire. 10 January 2019.
  2. ^ Chan, Rosalie. "IBM unveils the world's first quantum computer that businesses can actually use to solve previously impossible problems". Business Insider.
  3. ^ Coleman, Lauren deLisa. "CES 2019: Why IBM CEO Ginni Rometty's Opening Address Delivers". Forbes.
  4. ^ Waldner, Jean-Baptiste (2007). Nanocomputers and Swarm Intelligence. London: ISTE. p. 157. ISBN  2746215160 .
  5. ^ DiVincenzo, David P. (1995). "Quantum Computation". Science. 270 (5234): 255–261. Bibcode:1995Sci...270..255D. CiteSeerX 10.1.1.242.2165. doi:10.1126/science.270.5234.255. (يتطلب اشتراك)
  6. ^ "دليلك الشامل- ما هو الحاسوب الكمومي؟". إم آي تي تكنولوجي رڤيو. 2019-02-08. Retrieved 2019-02-08.
  7. ^ Lenstra, Arjen K. (2000). "Integer Factoring" (PDF). Designs, Codes and Cryptography. 19 (2/3): 101–128. doi:10.1023/A:1008397921377. Archived from the original (PDF) on 2015-04-10.
  8. ^ Quantum Algorithm Zoo – Stephen Jordan's Homepage
  9. ^ Jon Schiller, Phd (2009-06-19). Quantum Computers. ISBN  9781439243497 .
  10. ^ Norton, Quinn (2007-02-15). "The Father of Quantum Computing". Wired.
  11. ^ Ambainis, Andris (Spring 2014). "What Can We Do with a Quantum Computer?". Institute for Advanced Study.
  12. ^ Ambainis, Andris; Hassidim, Avinatan; Lloyd, Seth (2008). "Quantum algorithm for solving linear systems of equations". Physical Review Letters. 103 (15): 150502. arXiv:0811.3171. doi:10.1103/PhysRevLett.103.150502. PMID 19905613.
  13. ^ DiVincenzo, David P. (2000-04-13). "The Physical Implementation of Quantum Computation". Fortschritte der Physik. 48 (9–11): 771–783. arXiv:quant-ph/0002077. Bibcode:2000ForPh..48..771D. doi:10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E.
  14. ^ Das, A.; Chakrabarti, B. K. (2008). "Quantum Annealing and Analog Quantum Computation". Rev. Mod. Phys. 80 (3): 1061–1081. arXiv:0801.2193. Bibcode:2008RvMP...80.1061D. CiteSeerX 10.1.1.563.9990. doi:10.1103/RevModPhys.80.1061.
  15. ^ Nayak, Chetan; Simon, Steven; Stern, Ady; Das Sarma, Sankar (2008). "Nonabelian Anyons and Quantum Computation". Rev Mod Phys. 80 (3): 1083–1159. arXiv:0707.1889. Bibcode:2008RvMP...80.1083N. doi:10.1103/RevModPhys.80.1083.
  16. ^ Clarke, John; Wilhelm, Frank (June 19, 2008). "Superconducting quantum bits". Nature. 453 (7198): 1031–1042. Bibcode:2008Natur.453.1031C. doi:10.1038/nature07128. PMID 18563154.
  17. ^ قالب:Cite arXiv
  18. ^ Imamoğlu, Atac; Awschalom, D. D.; Burkard, Guido; DiVincenzo, D. P.; Loss, D.; Sherwin, M.; Small, A. (1999). "Quantum information processing using quantum dot spins and cavity-QED". Physical Review Letters. 83 (20): 4204–4207. arXiv:quant-ph/9904096. Bibcode:1999PhRvL..83.4204I. doi:10.1103/PhysRevLett.83.4204.
  19. ^ Fedichkin, Leonid; Yanchenko, Maxim; Valiev, Kamil (2000). "Novel coherent quantum bit using spatial quantization levels in semiconductor quantum dot". Quantum Computers and Computing. 1: 58–76. arXiv:quant-ph/0006097. Bibcode:2000quant.ph..6097F. Archived from the original on 2011-08-18.
  20. ^ Bertoni, A.; Bordone, P.; Brunetti, R.; Jacoboni, C.; Reggiani, S. (2000-06-19). "Quantum Logic Gates based on Coherent Electron Transport in Quantum Wires". Physical Review Letters. 84 (25): 5912–5915. Bibcode:2000PhRvL..84.5912B. doi:10.1103/PhysRevLett.84.5912. PMID 10991086.
  21. ^ Ionicioiu, Radu; Amaratunga, Gehan; Udrea, Florin (2001-01-20). "Quantum Computation with Ballistic Electrons". International Journal of Modern Physics B (in الإنجليزية). 15 (2): 125–133. arXiv:quant-ph/0011051. Bibcode:2001IJMPB..15..125I. doi:10.1142/s0217979201003521. ISSN 0217-9792.
  22. ^ Ramamoorthy, A.; Bird, J. P.; Reno, J. L. (2007). "Using split-gate structures to explore the implementation of a coupled-electron-waveguide qubit scheme". Journal of Physics: Condensed Matter (in الإنجليزية). 19 (27): 276205. Bibcode:2007JPCM...19A6205R. doi:10.1088/0953-8984/19/27/276205. ISSN 0953-8984.
  23. ^ Leuenberger, MN; Loss, D (Apr 12, 2001). "Quantum computing in molecular magnets". Nature. 410 (6830): 789–93. arXiv:cond-mat/0011415. Bibcode:2001Natur.410..789L. doi:10.1038/35071024. PMID 11298441.
  24. ^ Knill, G. J.; Laflamme, R.; Milburn, G. J. (2001). "A scheme for efficient quantum computation with linear optics". Nature. 409 (6816): 46–52. Bibcode:2001Natur.409...46K. doi:10.1038/35051009. PMID 11343107.
  25. ^ Nizovtsev, A. P. (August 2005). "A quantum computer based on NV centers in diamond: Optically detected nutations of single electron and nuclear spins". Optics and Spectroscopy. 99 (2): 248–260. Bibcode:2005OptSp..99..233N. doi:10.1134/1.2034610.
  26. ^ Gruener, Wolfgang (2007-06-01). "Research indicates diamonds could be key to quantum storage". Archived from the original on 2007-06-04. Retrieved 2007-06-04.
  27. ^ Neumann, P.; et al. (June 6, 2008). "Multipartite Entanglement Among Single Spins in Diamond". Science. 320 (5881): 1326–1329. Bibcode:2008Sci...320.1326N. doi:10.1126/science.1157233. PMID 18535240.
  28. ^ Millman, Rene (2007-08-03). "Trapped atoms could advance quantum computing". ITPro. Archived from the original on 2007-09-27. Retrieved 2007-07-26.
  29. ^ Ohlsson, N.; Mohan, R. K.; Kröll, S. (January 1, 2002). "Quantum computer hardware based on rare-earth-ion-doped inorganic crystals". Opt. Commun. 201 (1–3): 71–77. Bibcode:2002OptCo.201...71O. doi:10.1016/S0030-4018(01)01666-2.
  30. ^ Longdell, J. J.; Sellars, M. J.; Manson, N. B. (September 23, 2004). "Demonstration of conditional quantum phase shift between ions in a solid". Phys. Rev. Lett. 93 (13): 130503. arXiv:quant-ph/0404083. Bibcode:2004PhRvL..93m0503L. doi:10.1103/PhysRevLett.93.130503. PMID 15524694.
  31. ^ Náfrádi, Bálint; Choucair, Mohammad; Dinse, Klaus-Peter; Forró, László (July 18, 2016). "Room Temperature manipulation of long lifetime spins in metallic-like carbon nanospheres". Nature Communications. 7: 12232. arXiv:1611.07690. Bibcode:2016NatCo...712232N. doi:10.1038/ncomms12232. PMC 4960311. PMID 27426851.
  32. ^ Benioff, Paul (1980). "The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines". Journal of Statistical Physics. 22 (5): 563–591. Bibcode:1980JSP....22..563B. doi:10.1007/bf01011339.
  33. ^ Manin, Yu I (1980). "Vychislimoe i nevychislimoe" [Computable and Noncomputable]. Sov.Radio (in الروسية). pp. 13–15. Archived from the original on May 10, 2013. Retrieved October 20, 2017.
  34. ^ Gil, Dario (May 4, 2016). "The Dawn of Quantum Computing is Upon Us". Retrieved May 4, 2016.
  35. ^ Bennett,, C. H. (29 March 1993). "Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels" (PDF). Physical Review Letters. 70 (13): 1895–1899. Bibcode:1993PhRvL..70.1895B. doi:10.1103/PhysRevLett.70.1895. PMID 10053414.
  36. ^ Ekert, Artur; Josza, Richard (1996). "Quantum computation and Shor's factoring algorithm". Rev. Mod. Phys. 68 (3): 733–753. doi:10.1103/RevModPhys.68.733.
  37. ^ Vandersypen, Lieven M. K.; Steffen, Matthias; Breyta, Gregory; Yannoni, Costantino S.; Sherwood, Mark H.; Chuang, Isaac L. (2001). "Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance". Nature. 414 (6866): 883–7. arXiv:quant-ph/0112176. Bibcode:2001Natur.414..883V. CiteSeerX 10.1.1.251.8799. doi:10.1038/414883a. PMID 11780055.
  38. ^ "U-M develops scalable and mass-producible quantum computer chip". University of Michigan. 2005-12-12. Retrieved 2006-11-17.
  39. ^ DiCarlo, L.; Chow, J. M.; Gambetta, J. M.; Bishop, Lev S.; Johnson, B. R.; Schuster, D. I.; Majer, J.; Blais, A.; Frunzio, L.; S. M. Girvin; R. J. Schoelkopf (9 July 2009). "Demonstration of two-qubit algorithms with a superconducting quantum processor" (PDF). Nature. 460 (7252): 240–4. arXiv:0903.2030. Bibcode:2009Natur.460..240D. doi:10.1038/nature08121. PMID 19561592. Retrieved 2009-07-02.
  40. ^ "Scientists Create First Electronic Quantum Processor". Yale University. 2009-07-02. Archived from the original on 2010-06-11. Retrieved 2009-07-02.
  41. ^ "Code-breaking quantum algorithm runs on a silicon chip". New Scientist. 2009-09-04. Retrieved 2009-10-14.
  42. ^ "New Trends in Quantum Computation". Simons Conference on New Trends in Quantum Computation 2010: Program. C.N. Yang Institute for Theoretical Physics.
  43. ^ "Quantum Information Processing". Springer.com. Retrieved on 2011-05-19.
  44. ^ Bhattacharjee, Pijush Kanti (2010). "Digital Combinational Circuits Design by QCA Gates" (PDF). International Journal of Computer and Electrical Engineering. 2 (1): 67–72.
  45. ^ Bhattacharjee, Pijush Kanti (2010). "Digital Combinational Circuits Design with the Help of Symmetric Functions Considering Heat Dissipation by Each QCA Gate" (PDF). International Journal of Computer and Electrical Engineering. 2 (4): 666–672.
  46. ^ "Quantum teleporter breakthrough". University of New South Wales. 2011-04-15. Archived from the original on 2011-04-18.
  47. ^ Lai, Richard (2011-04-18). "First light wave quantum teleportation achieved, opens door to ultra fast data transmission". Engadget.
  48. ^ "D-Wave Systems sells its first Quantum Computing System to Lockheed Martin Corporation". D-Wave. 2011-05-25. Retrieved 2011-05-30.
  49. ^ "Operational Quantum Computing Center Established at USC". University of Southern California. 2011-10-29. Retrieved 2011-12-06.
  50. ^ Johnson, M. W.; Amin, M. H. S.; Gildert, S.; Lanting, T.; Hamze, F.; Dickson, N.; Harris, R.; Berkley, A. J.; Johansson, J.; Bunyk, P.; Chapple, E. M.; Enderud, C.; Hilton, J. P.; Karimi, K.; Ladizinsky, E.; Ladizinsky, N.; Oh, T.; Perminov, I.; Rich, C.; Thom, M. C.; Tolkacheva, E.; Truncik, C. J. S.; Uchaikin, S.; Wang, J.; Wilson, B.; Rose, G. (12 May 2011). "Quantum annealing with manufactured spins". Nature. 473 (7346): 194–198. Bibcode:2011Natur.473..194J. doi:10.1038/nature10012. PMID 21562559.
  51. ^ Simonite, Tom (October 4, 2012). "The CIA and Jeff Bezos Bet on Quantum Computing". Technology Review.
  52. ^ قالب:Cite arXiv
  53. ^ Boixo, Sergio; Rønnow, Troels F.; Isakov, Sergei V.; Wang, Zhihui; Wecker, David; Lidar, Daniel A.; Martinis, John M.; Troyer, Matthias (2014). "Quantum Annealing With More Than 100 Qbits". Nature Physics. 10 (3): 218–224. arXiv:1304.4595. Bibcode:2014NatPh..10..218B. doi:10.1038/nphys2900.
  54. ^ Albash, Tameem; Rønnow, Troels F.; Troyer, Matthias; Lidar, Daniel A. (2014-09-12). "Reexamining classical and quantum models for the D-Wave One processor". The European Physical Journal Special Topics. 224 (111): 111–129. arXiv:1409.3827. Bibcode:2015EPJST.224..111A. doi:10.1140/epjst/e2015-02346-0.
  55. ^ Lanting, T.; Przybysz, A. J.; Smirnov, A. Yu.; Spedalieri, F. M.; Amin, M. H.; Berkley, A. J.; Harris, R.; Altomare, F.; Boixo, S.; Bunyk, P.; Dickson, N.; Enderud, C.; Hilton, J. P.; Hoskinson, E.; Johnson, M. W.; Ladizinsky, E.; Ladizinsky, N.; Neufeld, R.; Oh, T.; Perminov, I.; Rich, C.; Thom, M. C.; Tolkacheva, E.; Uchaikin, S.; Wilson, A. B.; Rose, G. (2014-05-29). "Entanglement in a quantum annealing processor". Physical Review X. 4 (2): 021041. arXiv:1401.3500. Bibcode:2014PhRvX...4b1041L. doi:10.1103/PhysRevX.4.021041.
  56. ^ Lopez, Enrique Martin; Laing, Anthony; Lawson, Thomas; Alvarez, Roberto; Zhou, Xiao-Qi; O'Brien, Jeremy L. (2012). "Implementation of an iterative quantum order finding algorithm". Nature Photonics. 6 (11): 773–776. arXiv:1111.4147. Bibcode:2012NaPho...6..773M. doi:10.1038/nphoton.2012.259.
  57. ^ Mariantoni, Matteo; Wang, H.; Yamamoto, T.; Neeley, M.; Bialczak, Radoslaw C.; Chen, Y.; Lenander, M.; Lucero, Erik; O'Connell, A. D.; Sank, D.; Weides, M.; Wenner, J.; Yin, Y.; Zhao, J.; Korotkov, A. N.; Cleland, A. N.; Martinis, John M. (2011). "Quantum computer with Von Neumann architecture". Science. 334 (6052): 61–65. arXiv:1109.3743. Bibcode:2011Sci...334...61M. doi:10.1126/science.1208517. PMID 21885732.
  58. ^ Xu, Nanyang; Zhu, Jing; Lu, Dawei; Zhou, Xianyi; Peng, Xinhua; Du, Jiangfeng (2011). "Quantum Factorization of 143 on a Dipolar-Coupling NMR system". Physical Review Letters. 109 (26): 269902. arXiv:1111.3726. Bibcode:2012PhRvL.109z9902X. doi:10.1103/PhysRevLett.109.269902.
  59. ^ "IBM Says It's 'On the Cusp' of Building a Quantum Computer". PCMAG. Retrieved 2014-10-26.
  60. ^ "Quantum computer built inside diamond". Futurity. 2012-04-09. Retrieved 2014-10-26.
  61. ^ "Australian engineers write quantum computer 'qubit' in global breakthrough". The Australian. Retrieved 2012-10-03.
  62. ^ "Breakthrough in bid to create first quantum computer". University of New South Wales. 2012-09-19. Retrieved 2012-10-03.
  63. ^ Frank, Adam (October 14, 2012). "Cracking the Quantum Safe". The New York Times. Retrieved 2012-10-14.
  64. ^ Overbye, Dennis (October 9, 2012). "A Nobel for Teasing Out the Secret Life of Atoms". The New York Times. Retrieved 2012-10-14.
  65. ^ "First Teleportation from One Macroscopic Object to Another: The Physics arXiv Blog". MIT Technology Review. November 15, 2012. Retrieved 2012-11-17.
  66. ^ Bao, Xiao-Hui; Xu, Xiao-Fan; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-wei (November 13, 2012). "Quantum teleportation between remote atomic-ensemble quantum memories". Proceedings of the National Academy of Sciences. 109 (50): 20347–20351. arXiv:1211.2892. Bibcode:2012PNAS..10920347B. doi:10.1073/pnas.1207329109. PMC 3528515. PMID 23144222.
  67. ^ "1QBit Founded". 1QBit.com. Retrieved 2014-06-22.
  68. ^ "1QBit Research". 1QBit.com. Retrieved 2014-06-22.
  69. ^ أ ب "Launching the Quantum Artificial Intelligence Lab". Research@Google Blog. Retrieved 2013-05-16. We’ve already developed some quantum machine learning algorithms. One produces very compact, efficient recognizers -- very useful when you’re short on power, as on a mobile device. Another can handle highly polluted training data, where a high percentage of the examples are mislabeled, as they often are in the real world. And we’ve learned some useful principles: e.g., you get the best results not with pure quantum computing, but by mixing quantum and classical computing.
  70. ^ "NSA seeks to build quantum computer that could crack most types of encryption". Washington Post. January 2, 2014.
  71. ^ Ambainis, Andris; Wang, Z.; Job, J.; Boixo, S.; Isakov, S. V.; Wecker, D.; Martinis, J. M.; Lidar, D. A.; Troyer, M. (2014). "Defining and detecting quantum speedup". Science. 345 (6195): 420–424. arXiv:1401.2910v1. doi:10.1126/science.1252319. PMID 25061205.
  72. ^ "Quantum Chaos: After a Failed Speed Test, the D-Wave Debate Continues". Scientific American. 2014-06-19.
  73. ^ Gaudin, Sharon (23 October 2014). "Researchers use silicon to push quantum computing toward reality". Computer World.
  74. ^ "IBM achieves critical steps to first quantum computer". www-03.ibm.com. 29 April 2015.
  75. ^ Hensen, B. "Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres". Nature.
  76. ^ Condliffe, Jamie. "World's First Silicon Quantum Logic Gate Brings Quantum Computing One Step Closer".
  77. ^ "3Q: Scott Aaronson on Google's new quantum-computing paper". MIT News. Retrieved 2016-01-05.
  78. ^ قالب:Cite arxiv
  79. ^ "IBM Makes Quantum Computing Available on IBM Cloud to Accelerate Innovation". May 4, 2016. Retrieved May 4, 2016.
  80. ^ MacDonald, Fiona. "Researchers have built the first reprogrammable quantum computer". ScienceAlert. Retrieved 8 August 2016.
  81. ^ "A new Type of Quantum Bit". www.unibas.ch.
  82. ^ "IBM Builds Its Most Powerful Universal Quantum Computing Processors". 17 May 2017. Retrieved 17 May 2017.
  83. ^ Reynolds, Matt. "Quantum simulator with 51 qubits is largest ever". New Scientist. Retrieved 23 July 2017.
  84. ^ "IBM Pioneers New Approach to Simulate Chemistry with Quantum Computing". 13 September 2017. Retrieved 13 September 2017.
  85. ^ قالب:Cite arxiv
  86. ^ "Key component for quantum computing invented: University of Sydney team develop microcircuit based on Nobel Prize research".
  87. ^ "IBM Announces Collaboration with Leading Fortune 500 Companies, Academic Institutions and National Research Labs to Accelerate Quantum Computing". 14 November 2017. Retrieved 14 December 2017.
  88. ^ Microsoft Mechanics (11 December 2017). "Microsoft Quantum Development Kit: Introduction and step-by-step demo" – via YouTube.
  89. ^ Temperton, James (26 January 2017). "Got a spare $15 million? Why not buy your very own D-Wave quantum computer". Wired. Retrieved 13 May 2018.
  90. ^ Will Knight (2017-11-10). "IBM Raises the Bar with a 50-Qubit Quantum Computer". MIT Technology Review. Retrieved 2017-12-13.
  91. ^ Hsu, Jeremy (January 9, 2018). "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy". Institute of Electrical and Electronics Engineers. Retrieved July 5, 2018.
  92. ^ Susan Curtis (2018-03-06). "Google aims for quantum supremacy". PhysicsWorld (in الإنجليزية). Retrieved 2018-09-12.
  93. ^ Tom Simonite (2018-05-19). "Google, Alibaba Spar Over Timeline for "Quantum Supremacy"". Wired. Retrieved 2018-09-12.
  94. ^ Hignett, Katherine (16 February 2018). "Physics Creates New Form Of Light That Could Drive The Quantum Computing Revolution". Newsweek. Retrieved 17 February 2018.
  95. ^ Liang, Qi-Yu; et al. (16 February 2018). "Observation of three-photon bound states in a quantum nonlinear medium". Science. 359 (6377): 783–786. arXiv:1709.01478. Bibcode:2018Sci...359..783L. doi:10.1126/science.aao7293. PMID 29449489. Retrieved 17 February 2018.
  96. ^ Giles, Martin (February 15, 2018). "Old-fashioned silicon might be the key to building ubiquitous quantum computers". MIT Technology Review. Retrieved July 5, 2018.
  97. ^ Forrest, Conner (June 12, 2018). "Why Intel's smallest spin qubit chip could be a turning point in quantum computing". TechRepublic. Retrieved July 12, 2018.
  98. ^ "World-first quantum computer simulation of chemical bonds using trapped ions: Quantum chemistry expected to be one of the first applications of full-scale quantum computers". ScienceDaily (in الإنجليزية). Retrieved 2018-08-13.
  99. ^ Michael Nielsen and Isaac Chuang (2000). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press. ISBN  0-521-63503-9 . OCLC 174527496.

روابط خارجية