أوزميوم

أوزميوم, 76Os
Osmium crystals.jpg
أوزميوم
المظهرفضي، بظل أزرق
الوزن الذري العياري Ar°(Os)
أوزميوم في الجدول الدوري
Hydrogen (reactive nonmetal)
Helium (noble gas)
Lithium (alkali metal)
Beryllium (alkaline earth metal)
Boron (metalloid)
Carbon (reactive nonmetal)
Nitrogen (reactive nonmetal)
Oxygen (reactive nonmetal)
Fluorine (reactive nonmetal)
Neon (noble gas)
Sodium (alkali metal)
Magnesium (alkaline earth metal)
Aluminium (post-transition metal)
Silicon (metalloid)
Phosphorus (reactive nonmetal)
Sulfur (reactive nonmetal)
Chlorine (reactive nonmetal)
Argon (noble gas)
Potassium (alkali metal)
Calcium (alkaline earth metal)
Scandium (transition metal)
Titanium (transition metal)
Vanadium (transition metal)
Chromium (transition metal)
Manganese (transition metal)
Iron (transition metal)
Cobalt (transition metal)
Nickel (transition metal)
Copper (transition metal)
Zinc (post-transition metal)
Gallium (post-transition metal)
Germanium (metalloid)
Arsenic (metalloid)
Selenium (reactive nonmetal)
Bromine (reactive nonmetal)
Krypton (noble gas)
Rubidium (alkali metal)
Strontium (alkaline earth metal)
Yttrium (transition metal)
Zirconium (transition metal)
Niobium (transition metal)
Molybdenum (transition metal)
Technetium (transition metal)
Ruthenium (transition metal)
Rhodium (transition metal)
Palladium (transition metal)
Silver (transition metal)
Cadmium (post-transition metal)
Indium (post-transition metal)
Tin (post-transition metal)
Antimony (metalloid)
Tellurium (metalloid)
Iodine (reactive nonmetal)
Xenon (noble gas)
Caesium (alkali metal)
Barium (alkaline earth metal)
Lanthanum (lanthanide)
Cerium (lanthanide)
Praseodymium (lanthanide)
Neodymium (lanthanide)
Promethium (lanthanide)
Samarium (lanthanide)
Europium (lanthanide)
Gadolinium (lanthanide)
Terbium (lanthanide)
Dysprosium (lanthanide)
Holmium (lanthanide)
Erbium (lanthanide)
Thulium (lanthanide)
Ytterbium (lanthanide)
Lutetium (lanthanide)
Hafnium (transition metal)
Tantalum (transition metal)
Tungsten (transition metal)
Rhenium (transition metal)
Osmium (transition metal)
Iridium (transition metal)
Platinum (transition metal)
Gold (transition metal)
Mercury (post-transition metal)
Thallium (post-transition metal)
Lead (post-transition metal)
Bismuth (post-transition metal)
Polonium (post-transition metal)
Astatine (metalloid)
Radon (noble gas)
Francium (alkali metal)
Radium (alkaline earth metal)
Actinium (actinide)
Thorium (actinide)
Protactinium (actinide)
Uranium (actinide)
Neptunium (actinide)
Plutonium (actinide)
Americium (actinide)
Curium (actinide)
Berkelium (actinide)
Californium (actinide)
Einsteinium (actinide)
Fermium (actinide)
Mendelevium (actinide)
Nobelium (actinide)
Lawrencium (actinide)
Rutherfordium (transition metal)
Dubnium (transition metal)
Seaborgium (transition metal)
Bohrium (transition metal)
Hassium (transition metal)
Meitnerium (unknown chemical properties)
Darmstadtium (unknown chemical properties)
Roentgenium (unknown chemical properties)
Copernicium (post-transition metal)
Nihonium (unknown chemical properties)
Flerovium (unknown chemical properties)
Moscovium (unknown chemical properties)
Livermorium (unknown chemical properties)
Tennessine (unknown chemical properties)
Oganesson (unknown chemical properties)
Ru

Os

Hs
رينيومأوزميومإريديوم
الرقم الذري (Z)76
المجموعة8
الدورةperiod 6
المستوى الفرعي  d-block
التوزيع الإلكتروني[Xe] 4f14 5d6 6s2
الإلكترونات بالغلاف2, 8, 18, 32, 14, 2
الخصائص الطبيعية
الطور at د.ح.ض.قsolid
نقطة الانصهار3306 K ​(3033 °س، ​5491 °F)
نقطة الغليان5285 K ​(5012 °س، ​9054 °ف)
الكثافة (بالقرب من د.ح.غ.)22.59 ج/سم³
حين يكون سائلاً (عند ن.إ.)20 ج/سم³
حرارة الانصهار31 kJ/mol
حرارة التبخر378 kJ/mol
السعة الحرارية المولية24.7 J/(mol·K)
ضغط البخار
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 3160 3423 3751 4148 4638 5256
الخصائص الذرية
الكهرسلبيةمقياس پاولنگ: 2.2
طاقات التأين
  • الأول: 840 kJ/mol
  • الثاني: 1600 kJ/mol
نصف القطر الذريempirical: 135 pm
نصف قطر التكافؤ144±4 pm
Color lines in a spectral range
خصائص أخرى
التواجد الطبيعيprimordial
البنية البلوريةhexagonal close-packed (hcp)
Hexagonal close packed crystal structure for أوزميوم
سرعة الصوت قضيب رفيع4940 م/ث (عند 20 °س)
قضيب رفيع87.6 W/(m·K)
التمدد الحراري5.1 µm/(m⋅K) (عند 25 °س)
المقاومة الكهربائية81.2 nΩ⋅m (at 0 °C)
الترتيب المغناطيسيمغناطيسية مسايرة[1]
القابلية المغناطيسية11×10−6 cm3/mol[1]
معامل القص222 GPa
معاير الحجم462 GPa
نسبة پواسون0.25
صلادة موز7.0
صلادة ڤيكرز300 MPa
صلادة برينل293 MPa
رقم كاس7440-04-2
التاريخ
الاكتشاف وأول عزلسميثسون تنانت (1803)
نظائر الأوزميوم v • [{{fullurl:Template:{{{template}}}|action=edit}} e] 
النظائر الرئيسية[2] اضمحلال
توا­فر عمر النصف (t1/2) النمط نا­تج
184Os 0٫02% 1.12×1013 y[3] α 180W
185Os synth 93.6 d ε 185Re
186Os 1٫59% 2.0×1015 y α 182W
187Os 1٫96% stable
188Os 13٫2% stable
189Os 16٫1% stable
190Os 26٫3% stable
191Os synth 15.4 d β 191Ir
192Os 40٫8% stable
193Os synth 30.11 d β 193Ir
194Os synth 6 y β 194Ir
تصنيف التصنيف: أوزميوم
| المراجع

أوزميوم Osmium (IPA: /ˈɒzmiəm/) هو عنصر كيميائي رمزه Os ورقمه الذري 76. وهو فلز انتقالي صلب, قابل للقصف, أزرق-رمادي أو أزرق-أسود في مجموعة البلاتينات, وهو أحد أكثف العناصر الطبيعية[4] ويستعمل في بعض السبائك مع الپلاتين والإريديوم. ويتواجد الأوزميوم طبيعياً كسبيكة في خام الپلاتين. ورباعي أكسيده tetroxide يُستعمل في صبغ الأنسجة الحية وفي التلوين بالأصابع fingerprinting. سبائك الاوزميوم تستعمل في سِنون أقلام الحبر السائل , electrical contacts وفي تطبيقات أخرى تتطلب قدرة تحمل فائقة وصلابة.

الأُوزميوم عنصر فلزي صلب، رمزه Os. يزيد ثقله على الرصاص مرتين، وتصل كثافته إلى 22,48جم/سم§ عند درجة حرارة 20°م. ووزنه الذري 190,2، وعدده الذري 0,76. اكتشف الأوزميوم الكيميائي البريطاني سميثسون تنانت عام 1804م. ويُستخرج الأوزميوم من الخامات ذاتها المحتوية على البلاتين. وقد وُجد بعض الأُسميوم في مناجم البلاتين في كاليفورنيا وتسمانيا.

والفلز النقي مسحوق أسود دقيق، أو كتلة صلبة ذات لون رمادي ضارب إلى الزرقة. ودرجة غليان هذا الفلز هي حوالي 5,300°م. أما درجة الانصهار فهي 2,700°م، ولكن يُمكن أن يتبخر قبل الوصول إلى درجة حرارة عالية. وعندما تصل درجة تسخين الفلز إلى مايزيد على 93°م فإنه ينشر بُخاراً يمكن أن يضرّ بالعيون والرئتين والجلد. ويستخدم الفلز في صنع رؤوس الأقلام، ورأس ذراع الحاكي، وفي صناعة الأوزان والمقاييس.

Osmium is among the rarest elements in the Earth's crust, making up only 50 parts per trillion (ppt).[5][6] It is estimated to be about 0.6 parts per billion in the universe and is therefore the rarest precious metal.[7]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

السمات

الخصائص الطبيعية

Osmium, remelted pellet

Osmium has a blue-gray tint and is the densest stable element; it is approximately twice as dense as lead[8] and narrowly denser than iridium.[9] Calculations of density from the X-ray diffraction data may produce the most reliable data for these elements, giving a value of 22.587±0.009 g/cm3 for osmium, slightly denser than the 22.562±0.009 g/cm3 of iridium; both metals are nearly 23 times as dense as water, and 1+16 times as dense as gold.[10]

The reflectivity of single crystals of osmium is complex and strongly direction-dependent, with light in the red and near-infrared wavelengths being more strongly absorbed when polarized parallel to the c crystal axis than when polarized perpendicular to the c axis; the c-parallel polarization is also slightly more reflected in the mid-ultraviolet range. Reflectivity reaches a sharp minimum at around 1.5 eV (near-infrared) for the c-parallel polarization and at 2.0 eV (orange) for the c-perpendicular polarization, and peaks for both in the visible spectrum at around 3.0 eV (blue-violet).[11]

Osmium is a hard but brittle metal that remains lustrous even at high temperatures. It has a very low compressibility. Correspondingly, its bulk modulus is extremely high, reported between 395 and 462 GPa, which rivals that of diamond (443 GPa). The hardness of osmium is moderately high at 4 GPa.[12][13][14] Because of its hardness, brittleness, low vapor pressure (the lowest of the platinum-group metals), and very high melting point (the fourth highest of all elements, after carbon, tungsten, and rhenium), solid osmium is difficult to machine, form, or work.

الخصائص الكيميائية

مقال رئيسي: مركبات الأوزميوم
حالات الأكسدة للأوزميوم
−4 [OsIn6−xSnx][15]
−2 Na 2[Os(CO) 4]
−1 Na 2[Os 4(CO) 13]
0 Os 3(CO) 12
+1 OsI
+2 OsI 2
+3 OsBr 3
+4 OsO 2, OsCl 4
+5 OsF 5
+6 OsF 6
+7 OsOF 5
+8 OsO 4, Os(NCH 3) 4

Osmium forms compounds with oxidation states ranging from −4 to +8. The most common oxidation states are +2, +3, +4, and +8. The +8 oxidation state is notable for being the highest attained by any chemical element aside from iridium's +9[16] and is encountered only in xenon,[17][18] ruthenium,[19] hassium,[20] iridium,[21] and plutonium.[22][23] The oxidation states −1 and −2 represented by the two reactive compounds Na 2[Os 4(CO) 13] and Na 2[Os(CO) 4] are used in the synthesis of osmium cluster compounds.[24][25]

The most common compound exhibiting the +8 oxidation state is osmium tetroxide. This toxic compound is formed when powdered osmium is exposed to air. It is a very volatile, water-soluble, pale yellow, crystalline solid with a strong smell. Osmium powder has the characteristic smell of osmium tetroxide.[26] Osmium tetroxide forms red osmates OsO 4(OH)2−2 upon reaction with a base. With ammonia, it forms the nitrido-osmates OsO 3N .[27][28][29] Osmium tetroxide boils at 130 °C and is a powerful oxidizing agent. By contrast, osmium dioxide (OsO 2) is black, non-volatile, and much less reactive and toxic.

Only two osmium compounds have major applications: osmium tetroxide for staining tissue in electron microscopy and for the oxidation of alkenes in organic synthesis, and the non-volatile osmates for organic oxidation reactions.[30]

Osmium pentafluoride (OsF 5) is known, but osmium trifluoride (OsF 3) has not yet been synthesized. The lower oxidation states are stabilized by the larger halogens, so that the trichloride, tribromide, triiodide, and even diiodide are known. The oxidation state +1 is known only for osmium monoiodide (OsI), whereas several carbonyl complexes of osmium, such as triosmium dodecacarbonyl (Os 3(CO) 12), represent oxidation state 0.[27][28][31][32]

In general, the lower oxidation states of osmium are stabilized by ligands that are good σ-donors (such as amines) and π-acceptors (heterocycles containing nitrogen). The higher oxidation states are stabilized by strong σ- and π-donors, such as O2−  and N3− .[33]

Despite its broad range of compounds in numerous oxidation states, osmium in bulk form at ordinary temperatures and pressures is stable in air, resists attack by all acids, including aqua regia, but is attacked by fused alkalis,[34] hot nitric acid, and hot aqua regia.[35][صفحة مطلوبة]

النظائر

Osmium has seven naturally occurring isotopes, five of which are stable: 187 Os, 188 Os, 189 Os, 190 Os, and (most abundant) 192 Os. 189Os has a spin of 5/2 but 187Os has a nuclear spin 1/2. Its low natural abundance (1.64%) and low nuclear magnetic moment means that it is one of the most difficult natural abundance isotopes for NMR spectroscopy.[36]

186 Os undergoes alpha decay with such a long half-life (2.0±1.1)×1015 years, approximately 140000 times the age of the universe, that for practical purposes it can be considered stable. 184 Os is also known to undergo alpha decay with a half-life of (1.12±0.23)×1013 years.[3] Alpha decay is predicted for all the other naturally occurring isotopes, but this has never been observed, presumably due to very long half-lives. It is predicted that 184 Os and 192 Os can undergo double beta decay, but this radioactivity has not been observed yet.[37]

187 Os is the descendant of 187 Re (half-life 4.56×1010 years) and is used extensively in dating terrestrial as well as meteoric rocks (see rhenium-osmium dating). It has also been used to measure the intensity of continental weathering over geologic time and to fix minimum ages for stabilization of the mantle roots of continental cratons. This decay is a reason why rhenium-rich minerals are abnormally rich in 187 Os.[38] However, the most notable application of osmium isotopes in geology has been in conjunction with the abundance of iridium, to characterise the layer of shocked quartz along the Cretaceous–Paleogene boundary that marks the extinction of the non-avian dinosaurs 65 million years ago.[39]


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

التاريخ

Osmium was discovered in 1803 by Smithson Tennant and William Hyde Wollaston in London, England.[40] The discovery of osmium is intertwined with that of platinum and the other metals of the platinum group. Platinum reached Europe as platina ("small silver"), first encountered in the late 17th century in silver mines around the Chocó Department, in Colombia.[41] The discovery that this metal was not an alloy, but a distinct new element, was published in 1748.[42] Chemists who studied platinum dissolved it in aqua regia (a mixture of hydrochloric and nitric acids) to create soluble salts. They always observed a small amount of a dark, insoluble residue.[43] Joseph Louis Proust thought that the residue was graphite.[43] Victor Collet-Descotils, Antoine François, comte de Fourcroy, and Louis Nicolas Vauquelin also observed iridium in the black platinum residue in 1803, but did not obtain enough material for further experiments.[43] Later the two French chemists Fourcroy and Vauquelin identified a metal in a platinum residue they called ptène.[44]

In 1803, Smithson Tennant analyzed the insoluble residue and concluded that it must contain a new metal. Vauquelin treated the powder alternately with alkali and acids[45] and obtained a volatile new oxide, which he believed was of this new metal—which he named ptene, from the Greek word πτηνος (ptènos) for winged.[46][47] However, Tennant, who had the advantage of a much larger amount of residue, continued his research and identified two previously undiscovered elements in the black residue, iridium and osmium.[43][45] He obtained a yellow solution (probably of cis–[Os(OH)2O4]2−) by reactions with sodium hydroxide at red heat. After acidification he was able to distill the formed OsO4.[46] He named it osmium after Greek osme meaning "a smell", because of the ashy and smoky smell of the volatile osmium tetroxide.[48] Discovery of the new elements was documented in a letter to the Royal Society on June 21, 1804.[43][49]

Uranium and osmium were early successful catalysts in the Haber process, the nitrogen fixation reaction of nitrogen and hydrogen to produce ammonia, giving enough yield to make the process economically successful. At the time, a group at BASF led by Carl Bosch bought most of the world's supply of osmium to use as a catalyst. Shortly thereafter, in 1908, cheaper catalysts based on iron and iron oxides were introduced by the same group for the first pilot plants, removing the need for the expensive and rare osmium.[50]

Nowadays osmium is obtained primarily from the processing of platinum and nickel ores.[51]

التواجد

Native platinum containing traces of the other platinum group metals

Osmium is the least abundant stable element in Earth's crust, with an average mass fraction of 50 parts per trillion in the continental crust.[52]

Osmium is found in nature as an uncombined element or in natural alloys; especially the iridium–osmium alloys, osmiridium (iridium rich), and iridosmium (osmium rich).[45] In nickel and copper deposits, the platinum-group metals occur as sulfides (i.e., (Pt,Pd)S), tellurides (e.g., PtBiTe), antimonides (e.g., PdSb), and arsenides (e.g., PtAs
2
); in all these compounds platinum is exchanged by a small amount of iridium and osmium. As with all of the platinum-group metals, osmium can be found naturally in alloys with nickel or copper.[53]

Within Earth's crust, osmium, like iridium, is found at highest concentrations in three types of geologic structure: igneous deposits (crustal intrusions from below), impact craters, and deposits reworked from one of the former structures. The largest known primary reserves are in the Bushveld Igneous Complex in South Africa,[54] though the large copper–nickel deposits near Norilsk in Russia, and the Sudbury Basin in Canada are also significant sources of osmium. Smaller reserves can be found in the United States.[54] The alluvial deposits used by pre-Columbian people in the Chocó Department, Colombia, are still a source for platinum-group metals. The second large alluvial deposit was found in the Ural Mountains, Russia, which is still mined.[51][55]

الانتاج

Osmium is obtained commercially as a by-product from nickel and copper mining and processing. During electrorefining of copper and nickel, noble metals such as silver, gold and the platinum-group metals, together with non-metallic elements such as selenium and tellurium, settle to the bottom of the cell as anode mud, which forms the starting material for their extraction.[56][57] Separating the metals requires that they first be brought into solution. Several methods can achieve this, depending on the separation process and the composition of the mixture. Two representative methods are fusion with sodium peroxide followed by dissolution in aqua regia, and dissolution in a mixture of chlorine with hydrochloric acid.[54][58] Osmium, ruthenium, rhodium, and iridium can be separated from platinum, gold, and base metals by their insolubility in aqua regia, leaving a solid residue. Rhodium can be separated from the residue by treatment with molten sodium bisulfate. The insoluble residue, containing ruthenium, osmium, and iridium, is treated with sodium oxide, in which Ir is insoluble, producing water-soluble ruthenium and osmium salts. After oxidation to the volatile oxides, RuO 4 is separated from OsO 4 by precipitation of (NH4)3RuCl6 with ammonium chloride.

After it is dissolved, osmium is separated from the other platinum-group metals by distillation or extraction with organic solvents of the volatile osmium tetroxide.[59] The first method is similar to the procedure used by Tennant and Wollaston. Both methods are suitable for industrial-scale production. In either case, the product is reduced using hydrogen, yielding the metal as a powder or sponge that can be treated using powder metallurgy techniques.[60]

Neither the producers nor the United States Geological Survey published any production amounts for osmium. In 1971, estimations of the United States production of osmium as a byproduct of copper refining was 2000 troy ounces (62 kg).[61] Between 2010 and 2019, annual US imports of osmium ranged from less than 0.5 kg to 856 kg, averaging 157 kg/year.[62]

One method for producing osmium is from rhenium. 187 Re, which occurs 62.6% in nature, could absorb a neutron to become 188 Re. This has a short half-life of approximately 17 hours; the nucleus converts to 188 Os, which occurs 13.24% in nature.

التطبيقات

Because of the volatility and extreme toxicity of its oxide, osmium is rarely used in its pure state, but is instead often alloyed with other metals for high-wear applications. Osmium alloys such as osmiridium are very hard and, along with other platinum-group metals, are used in the tips of fountain pens, instrument pivots, and electrical contacts, as they can resist wear from frequent operation. They were also used for the tips of phonograph styli during the late 78 rpm and early "LP" and "45" record era, circa 1945 to 1955. Osmium-alloy tips were significantly more durable than steel and chromium needle points, but wore out far more rapidly than competing, and costlier, sapphire and diamond tips, so they were discontinued.[63]

Osmium tetroxide has been used in fingerprint detection[64] and in staining fatty tissue for optical and electron microscopy. As a strong oxidant, it cross-links lipids mainly by reacting with unsaturated carbon–carbon bonds and thereby both fixes biological membranes in place in tissue samples and simultaneously stains them. Because osmium atoms are extremely electron-dense, osmium staining greatly enhances image contrast in transmission electron microscopy (TEM) studies of biological materials. Those carbon materials otherwise have very weak TEM contrast.[30] Another osmium compound, osmium ferricyanide (OsFeCN), exhibits similar fixing and staining action.[65]

The tetroxide and its derivative potassium osmate are important oxidants in organic synthesis. For the Sharpless asymmetric dihydroxylation, which uses osmate for the conversion of a double bond into a vicinal diol, Karl Barry Sharpless was awarded the Nobel Prize in Chemistry in 2001.[66][67] OsO4 is very expensive for this use, so KMnO4 is often used instead, even though the yields are less for this cheaper chemical reagent.

In 1898, the Austrian chemist Auer von Welsbach developed the Oslamp with a filament made of osmium, which he introduced commercially in 1902. After only a few years, osmium was replaced by tungsten, which is more abundant (and thus cheaper) and more stable. Tungsten has the highest melting point among all metals, and its use in light bulbs increases the luminous efficacy and life of incandescent lamps.[46]

The light bulb manufacturer Osram (founded in 1906, when three German companies, Auer-Gesellschaft, AEG and Siemens & Halske, combined their lamp production facilities) derived its name from the elements of osmium and Wolfram (the latter is German for tungsten).[68]

Like palladium, powdered osmium effectively absorbs hydrogen atoms. This could make osmium a potential candidate for a metal-hydride battery electrode. However, osmium is expensive and would react with potassium hydroxide, the most common battery electrolyte.[69]

Osmium has high reflectivity in the ultraviolet range of the electromagnetic spectrum; for example, at 600 Å osmium has a reflectivity twice that of gold.[70] This high reflectivity is desirable in space-based UV spectrometers, which have reduced mirror sizes due to space limitations. Osmium-coated mirrors were flown in several space missions aboard the Space Shuttle, but it soon became clear that the oxygen radicals in low Earth orbit are abundant enough to significantly deteriorate the osmium layer.[71]



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

محاذير

Bulk osmium metal is innocuous and not very reactive.[74][75] Instead, the most important safety concern is the potential for the formation of osmium tetroxide (OsO4), which is both volatile and very poisonous.[76] This reaction is thermodynamically favorable at room temperature,[77] but the rate depends on the surface area of the metal.[78][79] As a result, bulk material is less hazardous[80][81] than powders, which react quickly enough that samples can sometimes smell like OsO4 if they are handled in air.[82][83]

السعر

Between 1990 and 2010, the nominal price of osmium metal was almost constant, while inflation reduced the real value from ~950 USD/ounce to ~600 USD/ounce.[84] Because osmium has few commercial applications, it is not heavily traded and prices are seldom reported.[84]

ملاحظات

  1. ^ أ ب Haynes 2011, p. 4.134.
  2. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  3. ^ أ ب Peters, Stefan T.M.; Münker, Carsten; Becker, Harry; Schulz, Toni (April 2014). "Alpha-decay of 184Os revealed by radiogenic 180W in meteorites: Half life determination and viability as geochronometer". Earth and Planetary Science Letters. 391: 69–76. doi:10.1016/j.epsl.2014.01.030.
  4. ^ المتنافسان للقب أكثف العناصر الطبيعية هما أوزميوم وإريديوم. حالياً، الجدل حول أيهما أكثف لم يُحلّ بعد في الأوساط العلمية
  5. ^ Fleischer, Michael (1953). "Recent estimates of the abundances of the elements in the Earth's crust" (PDF). U.S. Geological Survey.
  6. ^ "Reading: Abundance of Elements in Earth's Crust | Geology". courses.lumenlearning.com. Retrieved 2018-05-10.
  7. ^ "What Is the Rarest Metal?". Sciencing (in الإنجليزية). Retrieved 2021-04-28.
  8. ^ Haynes 2011, p. 4.25.
  9. ^ Arblaster, J. W. (1989). "Densities of osmium and iridium: recalculations based upon a review of the latest crystallographic data" (PDF). Platinum Metals Review. 33 (1): 14–16. Archived from the original (PDF) on February 7, 2012. Retrieved October 17, 2008.
  10. ^ Arblaster, J. W. (1995). "Osmium, the Densest Metal Known". Platinum Metals Review. 39 (4): 164. Archived from the original on September 27, 2011. Retrieved October 9, 2009.
  11. ^ Nemoshkalenko, V. V.; Antonov, V. N.; Kirillova, M. M.; Krasovskii, A. E.; Nomerovannaya, L. V. (January 1986). "The structure of the energy bands and optical absorption in osmium" (PDF). Sov. Phys. JETP. 63 (I): 115. Bibcode:1986JETP...63..115N. Retrieved 28 December 2022.
  12. ^ Weinberger, Michelle; Tolbert, Sarah; Kavner, Abby (2008). "Osmium Metal Studied under High Pressure and Nonhydrostatic Stress". Phys. Rev. Lett. 100 (4): 045506. Bibcode:2008PhRvL.100d5506W. doi:10.1103/PhysRevLett.100.045506. PMID 18352299. S2CID 29146762.
  13. ^ Cynn, Hyunchae; Klepeis, J. E.; Yeo, C. S.; Young, D. A. (2002). "Osmium has the Lowest Experimentally Determined Compressibility". Physical Review Letters. 88 (13): 135701. Bibcode:2002PhRvL..88m5701C. doi:10.1103/PhysRevLett.88.135701. PMID 11955108.
  14. ^ Sahu, B. R.; Kleinman, L. (2005). "Osmium Is Not Harder Than Diamond". Physical Review B. 72 (11): 113106. Bibcode:2005PhRvB..72k3106S. doi:10.1103/PhysRevB.72.113106.
  15. ^ Fe(−4), Ru(−4), and Os(−4) have been observed in metal-rich compounds containing octahedral complexes [MIn6−xSnx]; Pt(−3) (as a dimeric anion [Pt–Pt]6−), Cu(−2), Zn(−2), Ag(−2), Cd(−2), Au(−2), and Hg(−2) have been observed (as dimeric and monomeric anions; dimeric ions were initially reported to be [T–T]2− for Zn, Cd, Hg, but later shown to be [T–T]4− for all these elements) in La2Pt2In, La2Cu2In, Ca5Au3, Ca5Ag3, Ca5Hg3, Sr5Cd3, Ca5Zn3(structure (AE2+)5(T–T)4−T2−⋅4e), Yb3Ag2, Ca5Au4, and Ca3Hg2; Au(–3) has been observed in ScAuSn and in other 18-electron half-Heusler compounds. See Changhoon Lee; Myung-Hwan Whangbo (2008). "Late transition metal anions acting as p-metal elements". Solid State Sciences. 10 (4): 444–449. Bibcode:2008SSSci..10..444K. doi:10.1016/j.solidstatesciences.2007.12.001. and Changhoon Lee; Myung-Hwan Whangbo; Jürgen Köhler (2010). "Analysis of Electronic Structures and Chemical Bonding of Metal-rich Compounds. 2. Presence of Dimer (T–T)4– and Isolated T2– Anions in the Polar Intermetallic Cr5B3-Type Compounds AE5T3 (AE = Ca, Sr; T = Au, Ag, Hg, Cd, Zn)". Zeitschrift für Anorganische und Allgemeine Chemie. 636 (1): 36–40. doi:10.1002/zaac.200900421.
  16. ^ Stoye, Emma (23 October 2014). "Iridium forms compound in +9 oxidation state". Chemistry World. Royal Society of Chemistry.
  17. ^ Selig, H.; Claassen, H. H.; Chernick, C. L.; Malm, J. G.; et al. (1964). "Xenon tetroxide – Preparation + Some Properties". Science. 143 (3612): 1322–1323. Bibcode:1964Sci...143.1322S. doi:10.1126/science.143.3612.1322. JSTOR 1713238. PMID 17799234. S2CID 29205117.
  18. ^ Huston, J. L.; Studier, M. H.; Sloth, E. N. (1964). "Xenon tetroxide – Mass Spectrum". Science. 143 (3611): 1162–1163. Bibcode:1964Sci...143.1161H. doi:10.1126/science.143.3611.1161-a. JSTOR 1712675. PMID 17833897. S2CID 28547895.
  19. ^ Barnard, C. F. J. (2004). "Oxidation States of Ruthenium and Osmium". Platinum Metals Review. 48 (4): 157. doi:10.1595/147106704X10801.
  20. ^ "Chemistry of Hassium" (PDF). Gesellschaft für Schwerionenforschung mbH. 2002. Archived from the original (PDF) on 2012-01-14. Retrieved 2007-01-31.
  21. ^ Gong, Yu; Zhou, Mingfei; Kaupp, Martin; Riedel, Sebastian (2009). "Formation and Characterization of the Iridium Tetroxide Molecule with Iridium in the Oxidation State +VIII". Angewandte Chemie International Edition. 48 (42): 7879–7883. doi:10.1002/anie.200902733. PMID 19593837.[dead link]
  22. ^ Kiselev, Yu. M.; Nikonov, M. V.; Dolzhenko, V. D.; Ermilov, A. Yu.; Tananaev, I. G.; Myasoedov, B. F. (17 January 2014). "On existence and properties of plutonium(VIII) derivatives". Radiochimica Acta. 102 (3): 227–237. doi:10.1515/ract-2014-2146. S2CID 100915090.
  23. ^ Zaitsevskii, Andréi; Mosyagin, Nikolai S.; Titov, Anatoly V.; Kiselev, Yuri M. (21 July 2013). "Relativistic density functional theory modeling of plutonium and americium higher oxide molecules". The Journal of Chemical Physics. 139 (3): 034307. Bibcode:2013JChPh.139c4307Z. doi:10.1063/1.4813284. PMID 23883027.
  24. ^ Krause, J.; Siriwardane, Upali; Salupo, Terese A.; Wermer, Joseph R.; et al. (1993). "Preparation of [Os3(CO)11]2− and its reactions with Os3(CO)12; structures of [Et4N] [HOs3(CO)11] and H2OsS4(CO)". Journal of Organometallic Chemistry. 454 (1–2): 263–271. doi:10.1016/0022-328X(93)83250-Y.
  25. ^ Carter, Willie J.; Kelland, John W.; Okrasinski, Stanley J.; Warner, Keith E.; et al. (1982). "Mononuclear hydrido alkyl carbonyl complexes of osmium and their polynuclear derivatives". Inorganic Chemistry. 21 (11): 3955–3960. doi:10.1021/ic00141a019.
  26. ^ Mager Stellman, J. (1998). "Osmium". Encyclopaedia of Occupational Health and Safety. International Labour Organization. pp. 63.34. ISBN 978-92-2-109816-4. OCLC 35279504.
  27. ^ أ ب Holleman, A. F.; Wiberg, E.; Wiberg, N. (2001). Inorganic Chemistry (1st ed.). Academic Press. ISBN 978-0-12-352651-9. OCLC 47901436.
  28. ^ أ ب Griffith, W. P. (1965). "Osmium and its compounds". Quarterly Reviews, Chemical Society. 19 (3): 254–273. doi:10.1039/QR9651900254.
  29. ^ Subcommittee on Platinum-Group Metals, Committee on Medical and Biologic Effects of Environmental Pollutants, Division of Medical Sciences, Assembly of Life Sciences, National Research Council (1977). Platinum-group metals. National Academy of Sciences. p. 55. ISBN 978-0-309-02640-6.
  30. ^ أ ب Bozzola, John J.; Russell, Lonnie D. (1999). "Specimen Preparation for Transmission Electron Microscopy". Electron microscopy : principles and techniques for biologists. Sudbury, Mass.: Jones and Bartlett. pp. 21–31. ISBN 978-0-7637-0192-5.
  31. ^ Greenwood, N. N.; Earnshaw, A. (1997). Chemistry of the Elements (2nd ed.). Oxford:Butterworth-Heinemann. pp. 1113–1143, 1294. ISBN 978-0-7506-3365-9. OCLC 213025882.
  32. ^ Gulliver, D. J; Levason, W. (1982). "The chemistry of ruthenium, osmium, rhodium, iridium, palladium, and platinum in the higher oxidation states". Coordination Chemistry Reviews. 46: 1–127. doi:10.1016/0010-8545(82)85001-7.
  33. ^ Sykes, A. G. (1992). Advances in Inorganic Chemistry. Academic Press. p. 221. ISBN 978-0-12-023637-4.
  34. ^ "Osmium". Minor Metals Trade Association. 2016.
  35. ^ Lyon, S. B. "Corrosion of noble metals." (2010): 2205-2223.
  36. ^ Bell, Andrew G.; Koźmiński, Wiktor; Linden, Anthony; von Philipsborn, Wolfgang (1996). "187Os NMR Study of (η6-Arene)osmium(II) Complexes: Separation of Electronic and Steric Ligand Effects". Organometallics. 15 (14): 3124–3135. doi:10.1021/om960053i.
  37. ^ Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A 729: 3–128, doi:10.1016/j.nuclphysa.2003.11.001, Bibcode2003NuPhA.729....3A, https://hal.archives-ouvertes.fr/in2p3-00020241/document 
  38. ^ Dąbek, Józef; Halas, Stanislaw (2007). "Physical Foundations of Rhenium-Osmium Method – A Review". Geochronometria. 27 (1): 23–26. Bibcode:2007Gchrm..27...23D. doi:10.2478/v10003-007-0011-4.
  39. ^ Alvarez, L. W.; Alvarez, W.; Asaro, F.; Michel, H. V. (1980). "Extraterrestrial cause for the Cretaceous–Tertiary extinction" (PDF). Science. 208 (4448): 1095–1108. Bibcode:1980Sci...208.1095A. CiteSeerX 10.1.1.126.8496. doi:10.1126/science.208.4448.1095. PMID 17783054. S2CID 16017767.
  40. ^ Venetskii, S. I. (1974). "Osmium". Metallurgist. 18 (2): 155–157. doi:10.1007/BF01132596. S2CID 241230590.
  41. ^ McDonald, M. (959). "The Platinum of New Granada: Mining and Metallurgy in the Spanish Colonial Empire". Platinum Metals Review. 3 (4): 140–145. Archived from the original on June 9, 2011. Retrieved October 15, 2008.
  42. ^ Juan, J.; de Ulloa, A. (1748). Relación histórica del viage a la América Meridional (in الإسبانية). Vol. 1. p. 606.
  43. ^ أ ب ت ث ج Hunt, L. B. (1987). "A History of Iridium" (PDF). Platinum Metals Review. 31 (1): 32–41. Archived from the original (PDF) on March 4, 2012. Retrieved 2012-03-15.
  44. ^ Haubrichs, Rolf; Zaffalon, Pierre-Leonard (2017). "Osmium vs. 'Ptène': The Naming of the Densest Metal". Johnson Matthey Technology Review. 61 (3): 190. doi:10.1595/205651317x695631.
  45. ^ أ ب ت Emsley, J. (2003). "Osmium". Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 199–201. ISBN 978-0-19-850340-8.
  46. ^ أ ب ت Griffith, W. P. (2004). "Bicentenary of Four Platinum Group Metals. Part II: Osmium and iridium – events surrounding their discoveries". Platinum Metals Review. 48 (4): 182–189. doi:10.1595/147106704X4844.
  47. ^ Thomson, T. (1831). A System of Chemistry of Inorganic Bodies. Baldwin & Cradock, London; and William Blackwood, Edinburgh. p. 693.
  48. ^ Weeks, M. E. (1968). Discovery of the Elements (7 ed.). Journal of Chemical Education. pp. 414–418. ISBN 978-0-8486-8579-9. OCLC 23991202.
  49. ^ Tennant, S. (1804). "On Two Metals, Found in the Black Powder Remaining after the Solution of Platina". Philosophical Transactions of the Royal Society. 94: 411–418. doi:10.1098/rstl.1804.0018. JSTOR 107152.
  50. ^ Smil, Vaclav (2004). Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production. MIT Press. pp. 80–86. ISBN 978-0-262-69313-4.
  51. ^ أ ب George, Micheal W. "2006 Minerals Yearbook: Platinum-Group Metals" (PDF). United States Geological Survey USGS. Retrieved 2008-09-16.
  52. ^ Wedepohl, Hans K (1995). "The composition of the continental crust". Geochimica et Cosmochimica Acta. 59 (7): 1217–1232. Bibcode:1995GeCoA..59.1217W. doi:10.1016/0016-7037(95)00038-2.
  53. ^ Xiao, Z.; Laplante, A. R. (2004). "Characterizing and recovering the platinum group minerals—a review". Minerals Engineering. 17 (9–10): 961–979. Bibcode:2004MiEng..17..961X. doi:10.1016/j.mineng.2004.04.001.
  54. ^ أ ب ت Seymour, R. J.; O'Farrelly, J. I. (2001). "Platinum-group metals". Kirk Othmer Encyclopedia of Chemical Technology. Wiley. doi:10.1002/0471238961.1612012019052513.a01.pub2. ISBN 978-0471238966.
  55. ^ "Commodity Report: Platinum-Group Metals" (PDF). United States Geological Survey USGS. Retrieved 2008-09-16.
  56. ^ George, M. W. (2008). "Platinum-group metals" (PDF). U.S. Geological Survey Mineral Commodity Summaries.
  57. ^ George, M. W. 2006 Minerals Yearbook: Platinum-Group Metals (PDF). United States Geological Survey USGS. Retrieved 2008-09-16.
  58. ^ Renner, H.; Schlamp, G.; Kleinwächter, I.; Drost, E.; et al. (2002). "Platinum group metals and compounds". Ullmann's Encyclopedia of Industrial Chemistry. Wiley. doi:10.1002/14356007.a21_075. ISBN 978-3527306732.
  59. ^ Gilchrist, Raleigh (1943). "The Platinum Metals". Chemical Reviews. 32 (3): 277–372. doi:10.1021/cr60103a002. S2CID 96640406.
  60. ^ Hunt, L. B.; Lever, F. M. (1969). "Platinum Metals: A Survey of Productive Resources to industrial Uses" (PDF). Platinum Metals Review. 13 (4): 126–138. Archived from the original (PDF) on October 29, 2008. Retrieved 2008-10-02.
  61. ^ Smith, Ivan C.; Carson, Bonnie L.; Ferguson, Thomas L. (1974). "Osmium: An Appraisal of Environmental Exposure". Environmental Health Perspectives. 8: 201–213. doi:10.2307/3428200. JSTOR 3428200. PMC 1474945. PMID 4470919.
  62. ^ "Platinum-Group Metals Statistics and Information". US Geological Survey National Minerals Information Center. Retrieved 5 Mar 2021.
  63. ^ Cramer, Stephen D. & Covino, Bernard S. Jr. (2005). ASM Handbook Volume 13B. Corrosion: Materials. ASM International. ISBN 978-0-87170-707-9.
  64. ^ MacDonell, Herbert L. (1960). "The Use of Hydrogen Fluoride in the Development of Latent Fingerprints Found on Glass Surfaces". The Journal of Criminal Law, Criminology, and Police Science. 51 (4): 465–470. doi:10.2307/1140672. JSTOR 1140672.
  65. ^ Chadwick, D. (2002). Role of the sarcoplasmic reticulum in smooth muscle. John Wiley and Sons. pp. 259–264. ISBN 978-0-470-84479-3.
  66. ^ Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. (1994). "Catalytic Asymmetric Dihydroxylation". Chemical Reviews. 94 (8): 2483–2547. doi:10.1021/cr00032a009.
  67. ^ Colacot, T. J. (2002). "2001 Nobel Prize in Chemistry" (PDF). Platinum Metals Review. 46 (2): 82–83. Archived from the original (PDF) on January 31, 2013. Retrieved June 12, 2009.
  68. ^ Bowers, B., B. (2001). "Scanning our past from London: the filament lamp and new materials". Proceedings of the IEEE. 89 (3): 413–415. doi:10.1109/5.915382. S2CID 28155048.
  69. ^ Antonov, V. E.; Belash, I. T.; Malyshev, V. Yu.; Ponyatovsky, E. G. (1984). "The Solubility of Hydrogen in the Platinum Metals under High Pressure" (PDF). Platinum Metals Review. 28 (4): 158–163. Archived from the original (PDF) on January 31, 2013. Retrieved June 4, 2009.
  70. ^ Torr, Marsha R. (1985). "Osmium coated diffraction grating in the Space Shuttle environment: performance". Applied Optics. 24 (18): 2959. Bibcode:1985ApOpt..24.2959T. doi:10.1364/AO.24.002959. PMID 18223987.
  71. ^ Gull, T. R.; Herzig, H.; Osantowski, J. F.; Toft, A. R. (1985). "Low earth orbit environmental effects on osmium and related optical thin-film coatings". Applied Optics. 24 (16): 2660. Bibcode:1985ApOpt..24.2660G. doi:10.1364/AO.24.002660. PMID 18223936.
  72. ^ Linton, Roger C.; Kamenetzky, Rachel R. (1992). "Second LDEF post-retrieval symposium interim results of experiment A0034" (PDF). NASA. Retrieved 2009-06-06.
  73. ^ Linton, Roger C.; Kamenetzky, Rachel R.; Reynolds, John M.; Burris, Charles L. (1992). "LDEF experiment A0034: Atomic oxygen stimulated outgassing". NASA. Langley Research Center: 763. Bibcode:1992ldef.symp..763L.
  74. ^ McLaughlin, A. I. G.; Milton, R.; Perry, Kenneth M. A. (1 July 1946). "Toxic Manifestations of Osmium Tetroxide". Occupational and Environmental Medicine. 3 (3): 183–186. doi:10.1136/oem.3.3.183. PMC 1035752. PMID 20991177.
  75. ^ "Osmium 7440-04-2". Sax's Dangerous Properties of Industrial Materials (in الإنجليزية). John Wiley & Sons, Inc. 15 October 2012. doi:10.1002/0471701343.sdp45229. ISBN 978-0-471-70134-7. Retrieved 5 February 2023.
  76. ^ Lebeau, Alex (20 March 2015). "Platinum Group Elements: Palladium, Iridium, Osmium, Rhodium, and Ruthenium". Hamilton & Hardy's Industrial Toxicology (in الإنجليزية). John Wiley & Sons, Inc. pp. 187–192. ISBN 978-1-118-83401-5.
  77. ^ "Osmium(VIII) oxide". CRC Handbook of Chemistry and Physics, 103rd Edition (Internet Version 2022). CRC Press/Taylor & Francis Group. Retrieved 6 February 2023.
  78. ^ McLaughlin, A. I. G.; Milton, R.; Perry, Kenneth M. A. (1 July 1946). "Toxic Manifestations of Osmium Tetroxide". Occupational and Environmental Medicine. 3 (3): 183–186. doi:10.1136/oem.3.3.183. PMC 1035752. PMID 20991177.
  79. ^ Friedova, Natalie; Pelclova, Daniela; Obertova, Nikola; Lach, Karel; Kesslerova, Katerina; Kohout, Pavel (November 2020). "Osmium absorption after osmium tetroxide skin and eye exposure". Basic & Clinical Pharmacology & Toxicology. 127 (5): 429–433. doi:10.1111/bcpt.13450. PMID 32524772. S2CID 219588237.
  80. ^ Luttrell, William E.; Giles, Cory B. (1 September 2007). "Toxic tips: Osmium tetroxide". Journal of Chemical Health & Safety. 14 (5): 40–41. doi:10.1016/j.jchas.2007.07.003.
  81. ^ Smith, Ivan C.; Carson, Bonnie L.; Ferguson, Thomas L. (August 1974). "Osmium: An Appraisal of Environmental Exposure". Environmental Health Perspectives (in الإنجليزية). 8: 201–213. doi:10.1289/ehp.748201. ISSN 0091-6765. PMC 1474945. PMID 4470919.
  82. ^ Greenwood, N.N.; Earnshaw, A., eds. (1997). "Iron, Ruthenium and Osmium". Chemistry of the Elements (in الإنجليزية). Elsevier. pp. 1070–1112. doi:10.1016/B978-0-7506-3365-9.50031-6. ISBN 978-0-7506-3365-9.
  83. ^ Gadaskina, I. D. "Osmium". ILO Encyclopaedia of Occupational Health and Safety (in الإنجليزية البريطانية). Retrieved 6 February 2023.
  84. ^ أ ب "USGS Scientific Investigations Report 2012–5188: Metal Prices in the United States Through 2010". pubs.usgs.gov. U.S. Geological Survey. 2013. p. 119-128. Retrieved 11 July 2023.

المصادر

وصلات خارجية