مذيب

المـُحـِلات أو المذيبات بالإنگليزية: Solvents هي عبارة عن مواد سائلة أو صلبة أو غازية تنحل فيها مواد أخرى تدعى بالمواد المنحلة بالإنگليزية: Solute قد تكون أيضاً سائلة أو صلبة أو غازية، مشكلة ما يسمى محاليل بالإنگليزية: Solution، وتختلف درجة انحلال المادة المنحلة في المحلات بحسب درجة الحرارة وكمية المادة المنحلة المضافة وحجم المحل المستعمل وقدرة المحل على حل المادة المنحلة.

ترتبط قدرة المُحِلّ على الإذابة ارتباطاً وثيقاً ببنيته الكيمياوية، عُرفت هذه العلاقة منذ القدم، وعبر عنها بالمقولة الشهيرة التي مفادها: الشبيه يحل الشبيه، ويعبر عنها بالـ similia similibus solvuntur، ويعني هذا القول أن السائل العضوي يحل المادة العضوية وأن السائل اللاعضوي يحل المادة اللاعضوية. ويُعد الماء أكثر المُحِلاّت اللاعضوية شيوعاً واستعمالاً. وقادت قابلية الماء لحل كثير من المواد المتنوعة إلى الاعتقاد أن له خواص فريدة لا يجاريه فيها أي محل آخر. والواقع أن توافر الماء وسهولة تداوله وقابليته لتكوين مركبات مميهة hydrated وقدرته على حل كثير من المواد - الأيونية غالباً- قد وجَّه انتباه العلماء نحوه منذ البداية متجاهلين بذلك المُحِلاّت الأخرى. وقد ساعد على ذلك وجهات نظر أرينوس في اقتصار حوادث التفكك الكهرليتي على المحاليل المائية فقط. وبات العلماء - ومنهم أوستفالد Ostwald - مقتنعين لغاية عام 1893 بأن للماء خواص فريدة لا يجاريه فيها أي مُحِلّ آخر.

وعلى الرغم من إخفاق الباحثين بعد ذلك بإيجاد مُحِلّ يجاري الماء في خواصه فقد وجدوا أن الاختلاف بين الماء والمُحِلاّت الأخرى هو اختلاف في الدرجة وليس في النوع، وقد ساعد هذا المفهوم على تطور كيمياء المحاليل وفهمها.

فعندما تقع جزيئات الماء بين الأيونات على طرف من أطراف بلورة مادة أيونية (شاردية) تُضعف الترابط بينها، ما يساعدها على الانطلاق بعيداً عن البلورة. كذلك تحاط الأيونات - عندما تكون في الماء - بطبقة من جزيئات الماء تعزلها الواحد عن الآخر، وتمنعها من الترابط سوية وتشكيل البلورة من جديد. والماء يتميز بمقدرة على تجميع كل الأيونات السالبة والموجبة؛ ما يجعل منه مُحِلاً جيداً للبلورات الأيونية، ويُعزى ذلك إلى أن الماء جزيء قطبي له طرف موجب يجذب إليه الأيونات السالبة وطرف سالب يجذب إليه الأيونات الموجبة؛ فيما يتصف النفتالين بأنه جزيء غير قطبي تجمع جزيئاته في البلورة قوى فان درفالس، وهي القوى ذاتها التي تمسك بجزيئات البنزن C6H6 سوية. ولأن قوى فان درفالس ضعيفة؛ فإن فصم جزيئات النفتالين بعضها عن بعض لا يحتاج إلا إلى مقدار ضئيل من الطاقة. يمكن القول: عندما ينحل النفتالين في البنزن تحل قوى فان درفالس في المَحلول محل قوى فان درفالس في البلورة؛ لذلك لا يتوقع في هذه الحالة سوى تغير ضئيل في الأنطلبية، وهو الذي يحدث بالفعل، إذ يندر مصادفة أنطلبية محلول كبيرة من أجل جسم عضوي صلب محلول في سائل عضوي.[1]


وأكثر المُحِلاّت استعمالاً هي السائلة عند درجة حرارة الغرفة وعند الضغط الجوي لسهولة استعمالها، ولكن يُرغب أيضاً بإجراء التفاعلات والقياسات عند درجات حرارة أعلى أو أخفض من درجة حرارة الغرفة. ويدرج في الجدول بعض المُحِلاّت شائعة الاستعمال، ومجالها السائل وصيغها وقيم ثوابت العزل لهذه السوائل.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

الخواص الفيزيائية لبعض المذيبات الشائعة

جدول خواص المذيبات الشائعة

المذيب الصيغة الكيميائية نقطة الغليان[2] ثابت العازل[3] الكثافة Dipole moment
مذيبات غير قطبية
بينتان CH3-CH2-CH2-CH2-CH3 36 °C 1.84 0.626 g/ml 0.00 D
بينتان حلقي C5H10 40 °C 1.97 0.751 g/ml 0.00 D
هكسان CH3-CH2-CH2-CH2-CH2-CH3 69 °C 1.88 0.655 g/ml 0.00 D
هكسان حلقي C6H12 81 °C 2.02 0.779 g/ml 0.00 D
بنزين C6H6 80 °C 2.3 0.879 g/ml 0.00 D
تولوين C6H5-CH3 111 °C 2.38 0.867 g/ml 0.36 D
1,4-ديوكسان /-CH2-CH2-O-CH2-CH2-O-\ 101 °C 2.3 1.033 g/ml 0.45 D
كلوروفورم CHCl3 61 °C 4.81 1.498 g/ml 1.04 D
ثنائي إيثيل الإيثر CH3CH2-O-CH2-CH3 35 °C 4.3 0.713 g/ml 1.15 D
مذيبات قطبية ابروتونيية
Dichloromethane (DCM) CH2Cl2 40 °C 9.1 1.3266 g/ml 1.60 D
Tetrahydrofuran (THF) /-CH2-CH2-O-CH2-CH2-\ 66 °C 7.5 0.886 g/ml 1.75 D
Ethyl acetate CH3-C(=O)-O-CH2-CH3 77 °C 6.02 0.894 g/ml 1.78 D
Acetone CH3-C(=O)-CH3 56 °C 21 0.786 g/ml 2.88 D
Dimethylformamide (DMF) H-C(=O)N(CH3)2 153 °C 38 0.944 g/ml 3.82 D
Acetonitrile (MeCN) CH3-C≡N 82 °C 37.5 0.786 g/ml 3.92 D
Dimethyl sulfoxide (DMSO) CH3-S(=O)-CH3 189 °C 46.7 1.092 g/ml 3.96 D
Polar protic solvents
حمض الفورميك H-C(=O)OH 101 °C 58 1.21 g/ml 1.41 D
n-Butanol CH3-CH2-CH2-CH2-OH 118 °C 18 0.810 g/ml 1.63 D
Isopropanol (IPA) CH3-CH(-OH)-CH3 82 °C 18 0.785 g/ml 1.66 D
n-Propanol CH3-CH2-CH2-OH 97 °C 20 0.803 g/ml 1.68 D
Ethanol CH3-CH2-OH 79 °C 24.55 0.789 g/ml 1.69 D
Methanol CH3-OH 65 °C 33 0.791 g/ml 1.70 D
Acetic acid CH3-C(=O)OH 118 °C 6.2 1.049 g/ml 1.74 D
Water H-O-H 100 °C 80 1.000 g/ml 1.85 D
المذيب الصيغة الكيميائية δD Dispersion δP Polar δH Hydrogen bonding
Non-polar solvents
Hexane CH3-CH2-CH2-CH2-CH2-CH3 14.9 0.0 0.0
Benzene C6H6 18.4 0.0 2.0
تولوين C6H5-CH3 18.0 1.4 2.0
Diethyl ether CH3CH2-O-CH2-CH3 14.5 2.9 4.6
كلوروفورم CHCl3 17.8 3.1 5.7
1,4-Dioxane /-CH2-CH2-O-CH2-CH2-O-\ 17.5 1.8 9.0
Polar aprotic solvents
Ethyl acetate CH3-C(=O)-O-CH2-CH3 15.8 5.3 7.2
Tetrahydrofuran (THF) /-CH2-CH2-O-CH2-CH2-\ 16.8 5.7 8.0
Dichloromethane CH2Cl2 17.0 7.3 7.1
Acetone CH3-C(=O)-CH3 15.5 10.4 7.0
Acetonitrile (MeCN) CH3-C≡N 15.3 18.0 6.1
Dimethylformamide (DMF) H-C(=O)N(CH3)2 17.4 13.7 11.3
Dimethyl sulfoxide (DMSO) CH3-S(=O)-CH3 18.4 16.4 10.2
Polar protic solvents
Acetic acid CH3-C(=O)OH 14.5 8.0 13.5
n-Butanol CH3-CH2-CH2-CH2-OH 16.0 5.7 15.8
Isopropanol CH3-CH(-OH)-CH3 15.8 6.1 16.4
n-Propanol CH3-CH2-CH2-OH 16.0 6.8 17.4
Ethanol CH3-CH2-OH 15.8 8.8 19.4
Methanol CH3-OH 14.7 12.3 22.3
Formic acid H-C(=O)OH 14.6 10.0 14.0
Water H-O-H 15.5 16.0 42.3


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

نقطة الغليان

المذيب نقطة الغليان (°س)[2]
ethylene dichloride 83.48
pyridine 115.25
methyl isobutyl ketone 116.5
methylene chloride 39.75
isooctane 99.24
carbon disulfide 46.3
carbon tetrachloride 76.75
o-xylene 144.42

الكثافة

المذيب الثقل النوعي[4]
Pentane 0.626
Petroleum ether 0.656
Hexane 0.659
Heptane 0.684
Diethyl amine 0.707
Diethyl ether 0.713
Triethyl amine 0.728
Tert-butyl methyl ether 0.741
Cyclohexane 0.779
Tert-butyl alcohol 0.781
Isopropanol 0.785
Acetonitrile 0.786
Ethanol 0.789
Acetone 0.790
Methanol 0.791
Methyl isobutyl ketone 0.798
Isobutyl alcohol 0.802
1-Propanol 0.803
Methyl ethyl ketone 0.805
2-Butanol 0.808
Isoamyl alcohol 0.809
1-Butanol 0.810
Diethyl ketone 0.814
1-Octanol 0.826
p-Xylene 0.861
m-Xylene 0.864
Toluene 0.867
Dimethoxyethane 0.868
Benzene 0.879
Butyl acetate 0.882
1-Chlorobutane 0.886
Tetrahydrofuran 0.889
Ethyl acetate 0.895
o-Xylene 0.897
Hexamethylphosphorus triamide 0.898
2-Ethoxyethyl ether 0.909
N,N-Dimethylacetamide 0.937
Diethylene glycol dimethyl ether 0.943­
N,N-Dimethylformamide 0.944
2-Methoxyethanol 0.965
Pyridine 0.982
Propanoic acid 0.993
Water 1.000
2-Methoxyethyl acetate 1.009
Benzonitrile 1.01
1-Methyl-2-pyrrolidinone 1.028
Hexamethylphosphoramide 1.03
1,4-Dioxane 1.033
Acetic acid 1.049
Acetic anhydride 1.08
Dimethyl sulfoxide 1.092
Chlorobenzene 1.1066
Deuterium oxide 1.107
Ethylene glycol 1.115
Diethylene glycol 1.118
Propylene carbonate 1.21
Formic acid 1.22
1,2-Dichloroethane 1.245
Glycerin 1.261
Carbon disulfide 1.263
1,2-Dichlorobenzene 1.306
Methylene chloride 1.326
Nitromethane 1.382
2,2,2-Trifluoroethanol 1.393
Chloroform 1.498
1,1,2-Trichlorotrifluoroethane 1.575
Carbon tetrachloride 1.594
Tetrachloroethylene 1.623

­­­­

تصنيف المُحِلاّت

تصنف المُحِلات وفقاً لعدة معايير؛ هي:

الوظيفة الكيمياوية

تصنف المُحِلاّت وفقاً للوظيفة الكيمياوية التي تحملها إلى الفحوم الهدروجينية الأليفاتية والعطرية والعطرية غير المتجانسة ومشتقاتها الهالوجينية ومشتقات النترو والكحولات]] والفينولات]] والأمينات، كما تذكر الحموض الكربوكسيلية ومشتقاتها (الإسترات والأميدات والنتريلات) والإيترات والكيتونات والسلفوكسيدات.


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

الخواص الفيزيائية

يُستخدم هذا التصنيف عند الحاجة إلى خواص محددة للمُحِلّ المستخدم لتطبيق معين، مثل درجة الغليان ودرجة الانصهار وقرينة الانكسار والكثافة والقابلية للتطاير واللزوجة وغيرها. تُعد القطبية polarity من أهم مواصفات المُحِلاّت؛ لأنها تحدد العديد من المواصفات الأخرى، وبمعنى آخر تحدد سلوك المُحِلّ، مثل الميل للتأين (التشرد) والثبات الطاقي. ومن المواصفات المهمة في هذا السياق هو الثنائية القطبية المتشكلة في جزيء المُحِلّ من عزم ثنائي القطب والمحدد لقطبية المُحِلّ. يكون الجزيء قطبياً إذا لم ينطبق مركز الشحنات الموجبة فيه على مركز الشحنات السالبة. يؤلف الجزيء هكذا ثنائي قطب dipole (أي جزيء ثنائي قطب)؛ وهذا يعني شحنتين متساويتين ومتعاكستين بالإشارة، تفصل بينهما مسافة ما. ويكون للجزيء عزم ثنائي قطب μ وهو يساوي حاصل ضرب الشحنة e بالمسافة d التي تفصل مركزي الشحنتين. ويتعين على المُحِلّ أن يكون ثابت عزله الكهربائي dielectric constant كبيراً كي يستطيع حلّ المركبات الأيونية، أي يجب أن يتميز بخواص عازلة مرتفعة تستطيع تخفيض التجاذب بين الأيونات المتعاكسة الشحنة، بعد حلمهتها. يعود تفوق الماء مُحِلاً للمركبات الأيونية ليس فقط إلى قطبيته وارتفاع قيمة ثابت عزله الكهربائي؛ بل إلى عوامل أخرى أيضاً. فهو يحوي على الزمرة OH-؛ ولذلك يستطيع تشكيل الروابط الهدروجينية. تصنف المُحِلاّت استناداً إلى قطبيتها ووفقاً لكبر عزم ثنائي القطب لها إلى محلات ثنائية القطب ومحلات غير قطبية عندما تكون قيمة عزم ثنائي القطب فيها معدومة.

الخواص الحمضية والقلوية

تدعى المُحِلاّت المشابهة للماء والأمونيا والميتانول مثلاً المُحِلاّت البروتونية، وهي مُحِلات تحتوي على هدروجين يرتبط مع الأكسجين أو الآزوت، ولذلك فهو حمضي إلى حدّ يكفي لتشكيل روابط هدروجينية. تحِل المُحِلاّت البروتونية الأخرى الأيونات بالطريقة نفسها التي يقوم بها الماء، أي تحل الكاتيونات عبر الأشفاع الإلكترونية الحرة؛ أي غير المشتركة، أو تحل الأنيونات عبر الربط الهدروجيني، أما المُحِلاّت اللابروتونية؛ فهي مُحِلات ذات ثوابت عزل كهربائية متوسطة الارتفاع؛ ولا تحتوي على هدروجينات حمضية مثل -N, N ثنائي متيل الفورم أميد وثنائي متيل السلفوكسيد.

تُحل هذه المُحِلاَّت المركبات الأيونية، ولكنها تختلف في طريقة عملها هذا عن المُحِلاّت البروتونية اختلافاً جذرياً، فهي لا تستطيع تشكيل روابط هدروجينية مع الأنيونات. هذه المُحِلاّت اللابروتونية عالية القطبية ولها عزوم ثنائي قطب أكبر عدة مرات من عزم ثنائي قطب الماء. وكما تشير الصيغ فإن القطب السالب يقع عند ذرة الأكسجين التي تبرز إلى خارج الجزيء. تحل (تذوِّب) الكاتيونات بقوة عبر الأشفاع الإلكترونية غير المشترك بها والموجودة عند الذرات المشحونة سلباً والمكشوفة تماماً. يكون القطب الموجب من ناحية أخرى مدفوناً داخل الجزيء، وعبر هذه الشحنة المنتشرة والمحجوبة يمكن للجزيء أن يحل الأنيونات حلاً ضعيفاً جداً. وهكذا تستطيع المُحِلاّت اللابروتونية أن تحل المركبات الأيونية حلاً رئيساً عبر حلّها الكاتيونات.

تصنف المُحِلاّت وفق هذا المعيار لاستخدامات خاصة إلى محلات بروتونية ومُحِلاّت لابروتونية تتدرج في خواصها بين الحمضية والقلوية والمعتدلة؛ تميز منها:

- مُحِلاّت حمضية بروتونية، مثل الحموض اللاعضوية والحموض الكربوكسيلية والفينولات.

- مُحِلاّت قلوية بروتونية، مثل الأمونيا والأمينات والأميدات.

- مُحِلاّت معتدلة بروتونية، مثل الماء والكحولات.

- مُحِلاّت حمضية لابروتونية، مثل نترو الألكانات.

- مُحِلاّت قلوية لابروتونية، مثل البيريدين و-N, N ثنائي متيل الفورماميد وثنائي متيل السلفوكسيد.

- مُحِلاّت معتدلة لابروتونية، مثل الفحوم الهدروجينية وكلوريداتها والإيترات والكيتونات والنتريلات ومركبات نترو البنزن.

الوسط التفاعلي

يعتمد في تصنيف المُحِلاّت حسب استخداماتها وسطاً لتفاعلات كيمياوية عضوية على خواصها الإلكتروفيلية electrophilic (الإلكتروفيل هو الشغوف بالشحنة الموجبة) والنوكليوفيلية nucleophilic (النوكليوفيل هو الشغوف بالشحن السالبة). للمحلات البروتونية خواص نوكليوفيلية وإلكتروفيلية في حين تتميز المُحِلاّت اللابروتونية غالباً بخواص نوكليوفيلية. تعد المُحِلاّت الإلكتروفيلية من أهم المُحِلاّت ويذكر منها حموض لويس، مثل ثنائي أكسيد الكبريت SO2 وكلوريد الألمنيوم AlCl3. يظهر دور المُحِلّ وسطاً للتفاعلات جلياً في تفاعلات الاستبدال النوكليوفيلي الأليفاتي حيث توضح المعادلة العناصر الضرورية له متمثلة بالركيزة والنوكليوفيل والمُحِلّ.

تتألف الركيزة من جزأين: زمرة ألكيل والزمرة المغادرة. تؤدي الأساسية دوراً في دراسة النوكليوفيلات والزمر المغادرة. تتميز النوكليوفيلات بكونها أسساً، وتتميز الزمر المغادرة بكونها أسساًً ضعيفة.تكون غالبية المركبات العضوية في حالة الاستبدال النوكليوفيلي مهتمة بتفاعلات بين المركبات غير الأيونية (عموماً عضوية) وبين مركبات أيونية (لاعضوية وعضوية)، ومن الضروري اختيار المُحِلّ الذي تنحل فيه الكواشف من النوعين كليهما. يحل الماء المركبات الأيونية جيداً، ولكنه مُحِلّ رديء لمعظم المركبات العضوية. تعد المُحِلاّت اللاقطبية مثل الإيتر والكلوروفورم والبنزن مُحِلاّت جيدة للمركبات العضوية ولكنها رديئة للأملاح اللاعضوية؛ لذلك يوفر كل من الميتانول والإيتانول عند مزجهما بالماء كل على حدة وسطاً يساعد على حدوث الاستبدال النوكليوفيلي عموماً. غير أن الماء والكحولات مُحِلاّت بروتونية تستطيع أن تحل الأنيونات (الشوارد السالبة) بقوة عبر الربط الهدروجيني، وهذه الأنيونات تشكل عادة النصف المهم من الكاشف الأيوني، ولكن على الرغم من أن المُحِلاّت البروتونية تحل الكاشف، وتجعلها في تماس مع الجزيء العضوي؛ فإنها تثبت في الوقت نفسه الأنيونات، وتخفض من فاعليتها خفضاً كبيراً، وهي تضعف أساسيتها، وتضعف معها قوتها النوكليوفيلية. هنا يأتي دور المُحِلاّت اللابروتونية، فهي تحل المركبات العضوية والمركبات اللاعضوية عبر حلها للكاتيونات (الشوارد الموجبة)، وتترك الأنيونات غير معاقة نسبياً وعلى درجة عالية من الفاعلية، وهي أكثر أساسية وأكثر نوكليوفيلية. وقد وُجد أن التفاعلات التي تجري في محلات بروتونية ببطء عند درجات حرارة عالية معطية مردوداً منخفضاً تجري في محلات لابروتونية بسرعة عند درجة حرارة الغرفة وبمردود عالٍ.

التطبيقات الصناعية والتحليلية

يؤخذ بالحسبان عند تصنيف المُحِلاّت حسب تطبيقاتها الصناعية خواص متعددة هي القدرة على الإذابة والانحلالية في الماء ومجال الغليان والقابلية للاشتعال والنقاوة والسمية والقابلية للانفجار والسعر، وأخيراً إمكانية إعادة التدوير والاستخدام. تُستخدم المُحِلاّت في تصنيع الدهانات والمنتجات البلاستيكية والألياف الصنعية والأحبار والمواد اللاصقة والأصبغة وفي الصناعات الصيدلانية. لا يقتصر استخدام المُحِلات صناعياً على الاستخدامات الآنفة الذكر إنما يتعداها؛ ليشمل استخدامات صناعية أخرى تتجلى بوصفها وسطاً لتفاعلات صناعية متعددة مثل تفاعلات الهدرجة والأكسدة والهلجنة والأسترة والنترجة والديأزة وتفاعلات فريدل كرافت وتفاعلات گرينيار وتفاعلات نزع الماء ونزع الكربوكسيل. ومن الجدير بالذكر استخدام المُحِلاّت صناعياً على نطاق واسع في عمليات التنقية بالبلْوَرة؛ ويعتمد هذا التطبيق على قدرة المُحِلّ على حل المادة المراد تنقيتها من دون أن يحل المواد الملوِّثة المرافقة لها. تستخدم المُحِلاّت على نطاق واسع في التحاليل الآلية المختلفة مثل التحاليل الطيفية والكروماتوغرافية.

انظر أيضاً

المصادر

  1. ^ فرانسوا قره بيت. "المُحِلّ". الموسوعة العربية. Retrieved 2011-12-12.
  2. ^ أ ب Solvent Properties - Boiling Point
  3. ^ Dielectric Constant
  4. ^ Selected solvent properties - Specific Gravity

وصلات خارجية