هذه مقالة جيدة. لمزيد من المعلومات، اضغط هنا.

قطار مغناطيسي معلق

JR-Maglev at a test track in Yamanashi, Japan, in November 2005

القطار المغناطيسي المعلق إنگليزية: Magnetically levitating train ،فرنسية: Suspension train magnétique أو ما يعرف اختصارا بالماجليف "Maglev" وهي اختصار Magnitic levitation، وهو قطار يعمل بقوة الرفع المغناطيسية. أي يعتمد في عمله على المغناطيس حيث أنه لا يحتوي على محركات ميكانيكية ولا يسير على قضبان حديدية فهو يطفو في الهواء معتمدا على وسادة مغناطيسية يعمل على تكوينها مجالات كهرومغناطيسية قوية، وتمتاز هذه القطارات بسرعتها العالية التي تصل إلى 550 كم \ساعة، (نظريا يمكن أن تبلغ سرعته 1700 كلم\س).

يعتبرالقطار المغناطيسي السريع أول ابتكار جوهري في تقنية بناء السكك الحديدية منذ صناعة القطارات الأولى وهو أول نظام للسكك يتحرك إلى الأمام دون الحاجة إلى عجلات ومحاور وبالتالي دون احتكاك، إنها بمعنى آخر تخلي التقنية الميكانيكية عن مكانها لصالح التقنية الإلكترونية.


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

التاريخ

أول براءة اختراع

التطوير

  • في سنة 1914 كانت ولادة القطار المغناطيسي ,حيث قام المخترع ايميلي باشليت (فرنسي الاصل المولود في أمريكا) بكشف الستار عن فكرة القطار المغناطيسي وعرض نموذج مصغر لطريقة عمله.
  • في سنة 1943 نال المخترع الألماني هرمان كمبر براءة اختراع لاختراعه إحدى تقنيات القطار المغناطيسي.
  • في سنة 1966 قام العالمان جيمس باول وقوردن دامبي بعرض أول نظام عملي لهذا القطار باستخدام موصلات فائقة التوصيل.
  • أول مسار للاختبار شُيّد في مقاطعة ميزاكي, اليابان في سنة 1975 واستغرق سنتين ليتم بناءه وكان بطول 7 كم. وبعد ثلاثة أشهر تمت فيه أول تجربة باستخدام القطار ML 500
  • في سنة 1979 تم اختبار الجيل الجديد من القطارات والمسمى ML 500 R في اليابان وقد سجل سرعة 517 كم \ساعة ,وهو أول من سجل سرعة أعلى من 500 كم \ ساعة.

في سنة 1996 سجل القطار الألماني TR 07أعلى سرعة لقطار مغناطيسي في ألمانيا والتي بلغت 450 كم \ساعة.

  • في سنة 2003 تم تسجيل أعلى سرعة حتى الآن والتي بلغت 581 كم\ساعة باستخدام القطار الياباني MLX 01


نيويورك، الولايات المتحدة 1968

هامبورگ، ألمانيا 1979

برمنگهام، المملكة المتحدة 1984–1995

The Birmingham International Maglev shuttle


إمسلاند، ألمانيا 1984–2012


اليابان 1985

JNR ML500 at Miyazaki, Japan test track on 21 December 1979 517 km/h (321 mph); Guinness World Records authorization at that time


برلين، ألمانيا 1989–1991


أفق ومستقبل القطار المغناطيسي

بالرغم من أن القطار المغناطيسي يعتبر من أفضل وسائل النقل من حيث السرعة والهدوء والأمان إلا أنه لم ينتشر في مدن العالم، ويرجع السبب في ذلك لثمنه الباهظ، حيث تصل التكلفة الإجمالية لعمل مثل هذا القطار إلى أكثر من مليار دولار أمريكي، بالإضافة إلى كون القطارات الكهربائية المتطورة قد تفي بالغرض، حيث أنها ذات سرعات مقاربة لسرعة القطار المغناطيسي ولكن بتكلفة أقل بكثير من القطار المغناطيسي.

التكنولوجيا

عندما يكون لدينا مغناطيسين ونقوم بتقريبهما من بعض فإننا نلاحظ أنهما إما أن يتجاذبان (اختلاف الشحنة + - أو - +) أو يتنافران (تماثل الشحنة + + أو - -)، والتفسير لهذه الظاهرة هو أن كل مغناطيس يولد مجال مغناطيسي فيأثر به على الآخر، وبهذا نستطيع تعليق الأشياء. تم تطوير وتصنيع هذا القطار بشكل أساسي في ألمانيا واليابان.

إن أي قطار مغناطيسي في العالم مصمم وفق إحدى التقنيتين:

  • نظام التعليق الكهروديناميكي.
  • نظام التعليق الكهرومغناطيسي.

نظرة عامة

MLX01 Maglev train Superconducting magnet Bogie



التعليق الكهرومغناطيسي

نظام التعليق الكهرومغناطيسيإنگليزية: electroMagnétique System (EMS) هذه التقنية تعتمد على قوى التجاذب المغناطيسي، حيث تم لف الجزء السفلي من القطار والمحتوي على مغناطيسات تحت طرفي سكة الحديد، فتقوم المجالات المغناطيسية المتولدة برفع القطار عن السكة مسافة 15 ملم تقريبا مما يساعده على الحركة بسهولة، وتم دعم القطارات التي تستخدم هذه التقنية ببطاريات ذات قوة عالية تساعدها على البقاء في الهواء في حال فُقدت الطاقة على سكة الحديد حتى يتوقف بسلام.


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

التعليق الكهروديناميكي

JR-Maglev EDS suspension is due to the magnetic fields induced either side of the vehicle by the passage of the vehicle's superconducting magnets.
EDS Maglev propulsion via propulsion coils


نظام التعليق الكهروديناميكي إنگليزية: ElectroDynamique System EDS تعتمد هذه التقنية على قوى التنافر المتولدة بين مجالين مغناطيسيين يملكان نفس الشحنة لرفع القطار فوق سكة الحديد، حيث أنه تكون هناك مغناطيسات قوية مثبته في أسفل القطار تعمل على توليد أحد المجالات المغناطيسية والمجال الثاني يعمل على توليده مجموعة لفائف أسلاك من موصلات فائقة التوصيل تكون مثبته على جدران سكة الحديد الخاصة به. ولارتفاع درجة حرارة الموصلات تأثرا بالتيار الكهربائي فإنه يتم وضعها في أوعية من النيتروجين السائل (درجة تجمد النيتروجين السائل في الظروف القياسية هي -210 ْم).

بالنسبة لهذه التقنية، حينما يكون القطار يسير بسرعة منخفضة فإن التيار الناتج وتدفق الشحنات الكهربائية في اللفائف لا يكون كافيا لجعل القطار يسير في ارتفاع ثابت ولهذا السبب عمد مصممو القطار على تدعيمه بعجلات من الأسفل تساعده في الحفاظ على ثباته حتى يصل إلى السرعة التي تضمن سيره بثبات, ولكي يتحرك القطار فإنه يتم تدعيم اللفائف المعدنية المثبتة على جدران السكة بقوة متولدة من مجال مغناطيسي منفصل تأثر على المغناطيسات المثبتة أسفل القطار وتعمل على تحريكه والتحكم في سرعته.


الآلية في التكنولوجيات المختلفة


Technology    Pros    Cons

EMS[1][2] (Electromagnetic suspension) Magnetic fields inside and outside the vehicle are less than EDS; proven, commercially available technology that can attain very high speeds (500 km/h (310 mph)); no wheels or secondary propulsion system needed. The separation between the vehicle and the guideway must be constantly monitored and corrected by computer systems to avoid collision due to the unstable nature of electromagnetic attraction; due to the system's inherent instability and the required constant corrections by outside systems, vibration issues may occur.

EDS[3][4]
(Electrodynamic suspension)
Onboard magnets and large margin between rail and train enable highest recorded train speeds (581 km/h (361 mph)) and heavy load capacity; has demonstrated (December 2005) successful operations using high-temperature superconductors in its onboard magnets, cooled with inexpensive liquid nitrogen. Strong magnetic fields on board the train would make the train inaccessible to passengers with pacemakers or magnetic data storage media such as hard drives and credit cards, necessitating the use of magnetic shielding; limitations on guideway inductivity limit the maximum speed of the vehicle; vehicle must be wheeled for travel at low speeds.

Inductrack System[5][6] (Permanent Magnet Passive Suspension) Failsafe Suspension—no power required to activate magnets; Magnetic field is localized below the car; can generate enough force at low speeds (around 5 km/h (3.1 mph)) to levitate maglev train; in case of power failure cars slow down on their own safely; Halbach arrays of permanent magnets may prove more cost-effective than electromagnets. Requires either wheels or track segments that move for when the vehicle is stopped. New technology that is still under development (as of 2008) and as yet has no commercial version or full scale system prototype.

الدفع

الأمان

التوجيه

الأنابيب المفرغة


الطاقة المستخدمة

مقارنته مع قطارات أخرى

مقارنته بالطائرات

الاقتصاد

أرقام قياسية

تاريخ أعلى سرعات

  • 1971 – West Germany – Prinzipfahrzeug – 90 km/h (56 mph)
  • 1971 – West Germany – TR-02 (TSST) – 164 km/h (102 mph)
  • 1972 – Japan – ML100 – 60 km/h (37 mph) – (manned)
  • 1973 – West Germany – TR04 – 250 km/h (160 mph) (manned)
  • 1974 – West Germany – EET-01 – 230 km/h (140 mph) (unmanned)
  • 1975 – West Germany – Komet – 401 km/h (249 mph) (by steam rocket propulsion, unmanned)
  • 1978 – Japan – HSST-01 – 308 km/h (191 mph) (by supporting rockets propulsion, made in Nissan, unmanned)
  • 1978 – Japan – HSST-02 – 110 km/h (68 mph) (manned)
  • 1979-12-12 – Japan-ML-500R – 504 km/h (313 mph) (unmanned) It succeeds in operation over 500 km/h for the first time in the world.
  • 1979-12-21 – Japan-ML-500R – 517 km/h (321 mph) (unmanned)
  • 1987 – West Germany – TR-06 – 406 km/h (252 mph) (manned)
  • 1987 – Japan – MLU001 – 401 km/h (249 mph) (manned)
  • 1988 – West Germany – TR-06 – 413 km/h (257 mph) (manned)
  • 1989 – West Germany – TR-07 – 436 km/h (271 mph) (manned)
  • 1993 – Germany – TR-07 – 450 km/h (280 mph) (manned)
  • 1994 – Japan – MLU002N – 431 km/h (268 mph) (unmanned)
  • 1997 – Japan – MLX01 – 531 km/h (330 mph) (manned)
  • 1997 – Japan – MLX01 – 550 km/h (340 mph) (unmanned)
  • 1999 – Japan – MLX01 – 548 km/h (341 mph) (unmanned)
  • 1999 – Japan – MLX01 – 552 km/h (343 mph) (manned/five formation). Guinness authorization.
  • 2003 – China – Transrapid SMT (built in Germany) – 501 km/h (311 mph) (manned/three formation)
  • 2003 – Japan – MLX01 – 581 km/h (361 mph) (manned/three formation). Guinness authorization.[7]


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

أنظمة قائمة

أنظمة تشغيل للخدمة العامة

اليابان

Linimo train approaching Banpaku Kinen Koen, towards Fujigaoka Station in March 2005


هي قطارات يابانية الصنع تعمل بنظام التعليق الكهروديناميكي (EDS)، وهي مكونة من خمس عربات تسير على خط اختبار ياناماشي الذي تم افتتاحه في سنة 1993 في مقاطعة ياناماشي. تم الانتهاء من صنع هذه القطارات ما بين سنة 1993 و 2002، وهو يتسع ل 78 شخص، وقد سجل أعلى سرعة للقطارات المغناطيسية والتي بلغت 581 كم \ ساعة.

هناك تصميمين لقطارات ياناماشي :

1-وتد الهواء.

2-الطرف المستدق.

2- سلسلة قطارات (MLX 01-901)

وتم تصميمها بهذا الشكل حتى يتم التقليل من مقاومة الهواء أثناء السير بسرعات عالية، ولكي يتوقف هذا القطار فقد تم تزويده بمكابح هوائية وهي عبارة عن قطع متحركة في أعلى القطار يمكن تحريكها للأعلى لتكون معرضة لمقاومة الهواء التي تساعد على تقليل سرعة القطار ومن ثم التوقف.


قطار شانغهاي المغناطيسي المعلق

قطار شانغهاي المغناطيسي المعلق خارج مطار پودونگ الدولي.


كوريا الجنوبية

A maglev train in Daejeon


تحت الانشاء

أنظمة مقترحة

Malaysia

أستراليا

The proposed Melbourne maglev connecting the city of Geelong through Metropolitan Melbourne's outer suburban growth corridors, Tullamarine and Avalon domestic in and international terminals in under 20 mins and on to Frankston, Victoria, in under 30 minutes


المملكة المتحدة

Iran

اليابان

Proposed Chūō Shinkansen route (thin broken orange line) and existing Tōkaidō Shinkansen route (bold solid orange line)

ڤنزويلا

الصين

الهند

الولايات المتحدة

ألمانيا

سويسرا

إندونسيا

حوادث شهيرة

انظر أيضاً

المصادر

  1. ^ Ireson, Nelson (14 November 2008). "Dutch university working on affordable electromagnetic suspension". MotorAuthority.com.
  2. ^ Ogawa, Keisuke (30 October 2006). "Hitachi Exhibits Electromagnetic Suspension System". techon.nikkeibp.co.jp.
  3. ^ Marc T. Thompson (1999). "Flux-Canceling Electrodynamic Maglev Suspension: Part II Test Results and Scaling Laws" (PDF). IEEE Transactions on Magnetics. 35 (3). {{cite journal}}: Unknown parameter |coauthor= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  4. ^ Cotsalas, Valarie (4 June 2000). "It Floats! It Speeds! It's a Train!". New York Times.
  5. ^ "A New Approach for Magnetically Levitating Trains – and Rockets". llnl.gov. Retrieved 7 September 2009.
  6. ^ Richard F. Post (2000). "MagLev: A New Approach". Scientific American. {{cite web}}: Unknown parameter |month= ignored (help)
  7. ^ "The Superconducting Maglev Sets a Guinness World Record for Attaining 581km/h in a Manned Test Run". Central Japan Railway Company. 1 March 2004.[dead link]

قراءات إضافية

  • Heller, Arnie (June 1998). "A New Approach for Magnetically Levitating Trains—and Rockets". Science & Technology Review.
  • Hood, Christopher P. (2006). Shinkansen – From Bullet Train to Symbol of Modern Japan. Routledge. ISBN 0-415-32052-6.
  • Moon, Francis C. (1994). Superconducting Levitation Applications to Bearings and Magnetic Transportation. Wiley-VCH. ISBN 0-471-55925-3.
  • Rossberg, Ralf Roman (1983). Radlos in die Zukunft? Die Entwicklung neuer Bahnsysteme. Orell Füssli Verlag. ASIN B002ROWD5M.
  • Rossberg, Ralf Roman (1993). Radlos in die Zukunft? Die Entwicklung neuer Bahnsysteme. Orell Fuessli Verlag. ISBN 978-3-280-01503-2.
  • Simmons, Jack (1997). The Oxford Companion to British Railway History: From 1603 to the 1990s. Oxford: Oxford University Press. p. 303. ISBN 0-19-211697-5. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)

وصلات خارجية

شعار قاموس المعرفة.png
ابحث عن maglev في
قاموس المعرفة.

الكلمات الدالة: