قائمة إسقاطات الخرائط

التعديلات والإضافات المدعومة بمراجع مرحب بها.

توفر القائمة التالية نظرة عامة على بعض من أهم أو أكثر إسقاطات الخرائط شيوعاً. وحيث أن عدد إسقاطات الخرائط المحتملة غير محدود،[1] ليس هناك قائمة نهائية تشملها كلها.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

جدول الإسقاطات

الإسقاط صور النوع الخصائص المنشئ السنة ملاحظات
متساوي المستطيلات
= إسقاط الاسطوانات المتساوية التباع
= الإسقاط الجغرافي
= la carte parallélogrammatique
Equirectangular projection SW.jpg اسطواني متساوي المستطيلات مارينوس الصوري 120ح. 120 الهندسة المبسطة؛ يتم الحفاظ على المسافات على امتداد خطوط الطول.

پلات كاري: حالة خاصة يكون فيها خط الاستواء متوازي القياس.

كاسيني
= كاسيني-سولدنر
Cassini projection SW.jpg استطواني متساوي المستطيلات سيزار-فرنسوا كاسيني دى توري 1745 Transverse of equidistant projection; distances along central meridian are conserved.
Distances perpendicular to central meridian are preserved.
مركاتور
= رايت
Mercator projection Square.JPG اسطواني متطابق جراردوس مركاتور 1569 Lines of constant bearing (rhumb lines) are straight, aiding navigation. Areas inflate with latitude, becoming so extreme that the map cannot show the poles.
شبكة مركاتور Web maps Mercator projection SW.jpg اسطواني مرن گوگل 2005 Variant of Mercator that ignores Earth's ellipticity for fast calculation, and clips latitudes to ~85.05° for square presentation. De facto standard for Web mapping applications.
گاوس–كروگر
= گاوس المتطابق
= إسقاط عرضي (بيضاوي)
Ellipsoidal transverse Mercator projection SW.jpg اسطواني متطابق كارل فريدريش گاوس

يوهان هاينريش لويس كروگر

1822 This transverse, ellipsoidal form of the Mercator is finite, unlike the equatorial Mercator. Forms the basis of the Universal Transverse Mercator coordinate system.
گال التجسيمي
مشابه لبراون[من؟]
Gall Stereographic projection SW centered.jpg اسطواني مرن جيمس گال 1855 Intended to resemble the Mercator while also displaying the poles. Standard parallels at 45°N/S.
Braun[من؟] is horizontally stretched version with scale correct at equator.
ميلر
= ميلر الاسطواني
Miller projection SW.jpg اسطواني مرن أوسبورن ميتلاند ميلر 1942 Intended to resemble the Mercator while also displaying the poles.
لامبرت الأسطواني متساوي المساحات Lambert cylindrical equal-area projection SW.jpg اسطواني متساوي المساحة يوهان هاينرش لامبرت 1772 Standard parallel at the equator. Aspect ratio of π (3.14). Base projection of the cylindrical equal-area family.
برمان Behrmann projection SW.jpg اسطواني متساوي المساحة ڤالتر برمان 1910 Horizontally compressed version of the Lambert equal-area. Has standard parallels at 30°N/S and an aspect ratio of 2.36.
هوبو-داير Hobo–Dyer projection SW.jpg اسطواني متساوي المساحة مايك داير 2002 Horizontally compressed version of the Lambert equal-area. Very similar are Trystan Edwards and Smyth equal surface (= Craster rectangular) projections with standard parallels at around 37°N/S. Aspect ratio of ~2.0.
گال–پيترز
= إسقاط گال العمودي
= پيترز
Gall–Peters projection SW.jpg اسطواني متساوي المساحة جيمس گال

(أرنو پيترز)

1855 Horizontally compressed version of the Lambert equal-area. Standard parallels at 45°N/S. Aspect ratio of ~1.6. Similar is Balthasart projection with standard parallels at 50°N/S.
الاسطواني المركزي Central cylindric projection square.JPG اسطواني منظوري (غير معروف) 1850ح. 1850 Practically unused in cartography because of severe polar distortion, but popular in panoramic photography, especially for architectural scenes.
سينوسويدال
= سانسون-فلامستيد
= مركاتور متساوي المساحة
Sinusoidal projection SW.jpg Pseudocylindrical متساوي المساحة، متساوي المستطيلات (عدة؛ الأول مجهول) 1600ح. 1600 Meridians are sinusoids; parallels are equally spaced. Aspect ratio of 2:1. Distances along parallels are conserved.
مولڤايد
= البيضاوي
= بابينت
= homolographic
Mollweide projection SW.jpg Pseudocylindrical متساوي المساحة كارل براندان مولڤايد 1805 خطوط الطول بيضاوية.
إكرت الثاني Eckert II projection SW.JPG Pseudocylindrical متساوي المساحة ماكس إكرت-گريافندورف 1906
إكرت الرابع Ecker IV projection SW.jpg Pseudocylindrical متساوي المساحة ماكس إكرت-گريافندورف 1906 Parallels are unequal in spacing and scale; outer meridians are semicircles; other meridians are semiellipses.
إكرت السادس Ecker VI projection SW.jpg Pseudocylindrical متساوي المساحة ماكس إكرت-گريافندورف 1906 Parallels are unequal in spacing and scale; meridians are half-period sinusoids.
أورتليوس البيضاوي Ortelius oval projection SW.JPG Pseudocylindrical مرن باتيستا أگنيز 1540

خطوط العرض دائرية.[2]

Goode homolosine Goode homolosine projection SW.jpg Pseudocylindrical متساوي المساحة جون پول گود 1923 Hybrid of Sinusoidal and Mollweide projections.
Usually used in interrupted form.
كاڤرايسكي السابع Kavraiskiy VII projection SW.jpg Pseudocylindrical مرن ڤلاديمير ڤ. كاڤرايسكي 1939 Evenly spaced parallels. Equivalent to Wagner VI horizontally compressed by a factor of .
روبنسون Robinson projection SW.jpg Pseudocylindrical مرن أرثر هـ. روبنسون 1963 Computed by interpolation of tabulated values. Used by Rand McNally since inception and used by NGS 1988–98.
الأرض الطبيعية Natural Earth projection SW.JPG Pseudocylindrical مرن توم پاترسون 2011 Computed by interpolation of tabulated values.
Tobler hyperelliptical Tobler hyperelliptical projection SW.jpg Pseudocylindrical متساوي المساحة والدو ر. توبلر 1973 A family of map projections that includes as special cases Mollweide projection, Collignon projection, and the various cylindrical equal-area projections.
ڤاگنر السادس Wagner VI projection SW.jpg Pseudocylindrical مرن ك.هـ. ڤاگنر 1932 Equivalent to Kavrayskiy VII vertically compressed by a factor of .
كولينون Collignon projection SW.jpg Pseudocylindrical متساوي المساحة إدوار كولينون 1865ح. 1865 Depending on configuration, the projection also may map the sphere to a single diamond or a pair of squares.
HEALPix HEALPix projection SW.svg Pseudocylindrical متساوي المساحة كريزيستوف م. گورسكي 1997 Hybrid of Collignon + Lambert cylindrical equal-area
Boggs eumorphic Boggs eumorphic projection SW.JPG Pseudocylindrical متساوي المساحة صمويل وايتمور بوگس 1929 The equal-area projection that results from average of sinusoidal and Mollweide y-coordinates and thereby constraining the x coordinate.
Craster parabolic
=Putniņš P4
Craster parabolic projection SW.jpg Pseudocylindrical متساوي المساحة جون كراستر 1929 Meridians are parabolas. Standard parallels at 36°46′N/S; parallels are unequal in spacing and scale; 2:1 Aspect.
McBryde-Thomas flat-pole quartic
= مكبرايد-توماس #4
McBryde-Thomas flat-pole quartic projection SW.jpg Pseudocylindrical متساوي المساحة فليكس و. مكبرايد، پول توماس 1949 Standard parallels at 33°45′N/S; parallels are unequal in spacing and scale; meridians are fourth-order curves. Distortion-free only where the standard parallels intersect the central meridian.
Quartic authalic Quartic authalic projection SW.jpg Pseudocylindrical متساوي المساحة كارل توماس، أوسكار أدامز 1937

1944

Parallels are unequal in spacing and scale. No distortion along the equator. Meridians are fourth-order curves.
تاميز The Times projection SW.jpg Pseudocylindrical من جون موير 1965 Standard parallels 45°N/S. Parallels based on Gall stereographic, but with curved meridians. Developed for Bartholomew Ltd., The Times Atlas.
Loximuthal Loximuthal projection SW.JPG Pseudocylindrical مرن كارل سيمون، والدو توبلر 1935, 1966 From the designated centre, lines of constant bearing (rhumb lines/loxodromes) are straight and have the correct length. Generally asymmetric about the equator.
Aitoff Aitoff projection SW.jpg Pseudoazimuthal مرن David A. Aitoff 1889 Stretching of modified equatorial azimuthal equidistant map. Boundary is 2:1 ellipse. Largely superseded by Hammer.
Hammer
= Hammer-Aitoff
variations: Briesemeister; Nordic
Hammer projection SW.jpg Pseudoazimuthal متساوي المساحة إرنست هامر 1892 Modified from azimuthal equal-area equatorial map. Boundary is 2:1 ellipse. Variants are oblique versions, centred on 45°N.
Winkel tripel Winkel triple projection SW.jpg Pseudoazimuthal Compromise Oswald Winkel 1921 Arithmetic mean of the equirectangular projection and the Aitoff projection. Standard world projection for the NGS 1998–present.
Van der Grinten Van der Grinten projection SW.jpg Other Compromise Alphons J. van der Grinten 1904 Boundary is a circle. All parallels and meridians are circular arcs. Usually clipped near 80°N/S. Standard world projection of the NGS 1922–88.
Equidistant conic
= simple conic
Equidistant conic projection SW.JPG Conic Equidistant Based on Ptolemy's 1st Projection 100ح. 100 Distances along meridians are conserved, as is distance along one or two standard parallels[3]
Lambert conformal conic Lambert conformal conic projection SW.jpg Conic Conformal Johann Heinrich Lambert 1772 Used in aviation charts.
Albers conic Albers projection SW.jpg Conic Equal-area Heinrich C. Albers 1805 Two standard parallels with low distortion between them.
Werner Werner projection SW.jpg Pseudoconical Equal-area, Equidistant Johannes Stabius 1500ح. 1500 Distances from the North Pole are correct as are the curved distances along parallels and distances along central meridian.
Bonne Bonne projection SW.jpg Pseudoconical, cordiform Equal-area Bernardus Sylvanus 1511 Parallels are equally spaced circular arcs and standard lines. Appearance depends on reference parallel. General case of both Werner and sinusoidal
Bottomley Bottomley projection SW.JPG Pseudoconical Equal-area Henry Bottomley 2003 Alternative to the Bonne projection with simpler overall shape

Parallels are elliptical arcs
Appearance depends on reference parallel.

American polyconic American Polyconic projection.jpg Pseudoconical Compromise Ferdinand Rudolph Hassler 1820ح. 1820 Distances along the parallels are preserved as are distances along the central meridian.
Rectangular polyconic Rectangular polyconic projection SW.jpg Pseudoconical Compromise U.S. Coast Survey 1853ح. 1853 Latitude along which scale is correct can be chosen. Parallels meet meridians at right angles.
Latitudinally equal-differential polyconic Pseudoconical Compromise China State Bureau of Surveying and Mapping 1963 Polyconic: parallels are non-concentric arcs of circles.
Azimuthal equidistant
=Postel
zenithal equidistant
Azimuthal equidistant projection SW.jpg Azimuthal Equidistant Abū Rayḥān al-Bīrūnī 1000ح. 1000 Used by the USGS in the National Atlas of the United States of America.

Distances from centre are conserved.
Used as the emblem of the United Nations, extending to 60° S.

Gnomonic Gnomonic projection SW.jpg Azimuthal Gnomonic Thales (possibly) 580 BCح. 580 BC All great circles map to straight lines. Extreme distortion far from the center. Shows less than one hemisphere.
Lambert azimuthal equal-area Lambert azimuthal equal-area projection SW.jpg Azimuthal Equal-area Johann Heinrich Lambert 1772 The straight-line distance between the central point on the map to any other point is the same as the straight-line 3D distance through the globe between the two points.
المجسم Stereographic projection SW.JPG Azimuthal Conformal هيپارخوس (نشره) 200 ق.م.ح. 200 ق.م. Map is infinite in extent with outer hemisphere inflating severely, so it is often used as two hemispheres. Maps all small circles to circles, which is useful for planetary mapping to preserve the shapes of craters.
المتآصل Orthographic projection SW.jpg Azimuthal منظوري Hipparchos (نشره) 200 ق.م.ح. 200 ق.م. View from an infinite distance.
منظوري رأسي Vertical perspective SW.jpg Azimuthal منظوري ماتياس سوتر (نشره) 1740 View from a finite distance. Can only display less than a hemisphere.
Two-point equidistant Two-point equidistant projection SW.jpg Azimuthal Equidistant Hans Maurer 1919 Two "control points" can be almost arbitrarily chosen. The two straight-line distances from any point on the map to the two control points are correct.
Peirce quincuncial Peirce quincuncial projection SW.jpg أخرى Conformal تشارلز ساندرز پيرس 1879
Guyou hemisphere-in-a-square projection Guyou doubly periodic projection SW.JPG أخرى Conformal Émile Guyou 1887
Adams hemisphere-in-a-square projection Adams hemisphere in a square.JPG أخرى Conformal أوسكار شرمان آدمز 1925
Lee conformal world on a tetrahedron Lee Conformal World in a Tetrahedron projection.png Polyhedral Conformal ل. پ. لي 1965 Projects the globe onto a regular tetrahedron. Tessellates.
Authagraph projection Link to file Polyhedral Compromise Hajime Narukawa 1999 Approximately equal-area. Tessellates.
Octant projection Leonardo da Vinci’s Mappamundi.jpg Polyhedral Compromise Leonardo da Vinci 1514 Projects the globe onto eight octants (Reuleaux triangles) with no meridians and no parallels.
Cahill's Butterfly Map Cahill Butterfly Map.jpg Polyhedral Compromise Bernard Joseph Stanislaus Cahill 1909 Projects the globe onto an octahedron with symmetrical components and contiguous landmasses that may be displayed in various arrangements
Cahill–Keyes projection Cahill-Keyes projection.png Polyhedral Compromise Gene Keyes 1975 Projects the globe onto a truncated octahedron with symmetrical components and contiguous land masses
Waterman butterfly projection Waterman projection.png Polyhedral Compromise Steve Waterman 1996 Projects the globe onto a truncated octahedron with symmetrical components and contiguous land masses that may be displayed in various arrangements
Quadrilateralized spherical cube Polyhedral متساوي المساحة F. Kenneth Chan, E. M. O’Neill 1973
Dymaxion map Dymaxion projection.png Polyhedral مرن بكمنستر فولر 1943 يُعرف أيضاً بمنظور فولر.
Myriahedral projections Polyhedral مرن Jarke J. van Wijk 2008 Projects the globe onto a myriahedron: a polyhedron with a very large number of faces.[4][5]
Craig retroazimuthal
= Mecca
Craig projection SW.jpg Retroazimuthal مرن James Ireland Craig 1909
Hammer retroazimuthal, front hemisphere Hammer retroazimuthal projection front SW.JPG Retroazimuthal إرنتس هامر 1910
Hammer retroazimuthal, back hemisphere Hammer retroazimuthal projection back SW.JPG Retroazimuthal إرنست هامر 1910
Littrow Littrow projection SW.JPG Retroazimuthal Conformal Joseph Johann Littrow 1833 on equatorial aspect it shows a hemisphere except for poles
أرماديلو Armadillo projection SW.JPG أخرى مرن Erwin Raisz 1943
GS50 GS50 projection.png أخرى Conformal John P. Snyder 1982 Designed specifically to minimize distortion when used to display all 50 U.S. states.
Nicolosi globular 1883 religions map.jpg Polyconic[6] Abū Rayḥān al-Bīrūnī; reinvented by Giovanni Battista Nicolosi, 1660.[1]:14 1000ح. 1000
Roussilhe oblique stereographic Henri Roussilhe 1922
Hotine oblique Mercator Hotine Mercator projection SW.jpg اسطواني Conformal M. Rosenmund, J. Laborde, Martin Hotine 1903


المفتاح


الهوامش

  1. ^ أ ب Snyder, John P. (1993). Flattening the earth: two thousand years of map projections. University of Chicago Press. p. 1. ISBN 0-226-76746-9.
  2. ^ Donald Fenna (2006). Cartographic Science: A Compendium of Map Projections, with Derivations. CRC Press. p. 249. ISBN 978-0-8493-8169-0.
  3. ^ Carlos A. Furuti. Conic Projections: Equidistant Conic Projections
  4. ^ Jarke J. van Wijk. "Unfolding the Earth: Myriahedral Projections". [1]
  5. ^ Carlos A. Furuti. "Interrupted Maps: Myriahedral Maps". [2]
  6. ^ "Nicolosi Globular projection"

قراءات إضافية