خلايا شمسية

هذا المقال يتضمن أسماءً أعجمية تتطلب حروفاً إضافية (پ چ ژ گ ڤ ڠ).
لمطالعة نسخة مبسطة، بدون حروف إضافية
خلية شمسية, مصنوعة من رقاقة سيليكون أحادية التبلور.

الخلية الشمسية أو الخلية الفولتية الضوئية (Photovoltaics PV) أوالخلايا الفولتضوئية photovoltaic cells . فمن خلالها يتم تحويل اشعة الشمس مباشرة لكهرباء ، عن طريق إستخدام تقنية الحالة الصلبة solid-state technology التي تستخدم فيها خلايا مصنوعة من مادة السليكون (الرمل) المتوفرة فوق الأرض. وتستخدم مواد عديدة أخري في الخلايا الشمسية لكن أساسها مادة السليكون . وبصفة عامة مواد هذه الخلايا إما مادة بللورية سميكة كالسيليكون البللوري Crystalline Silicon أو مادة غير بللورية رقيقة كمادة السيلكون اللابللوري (Amorphous Silicon a-Si) و Cadmium (Telluride CdTe)أو (Copper Indium Diselenide CuInSe^2, or CIS) أو مواد مترسبة كطبقات فوق شرائح من شبه الموصلات تتكون من أرسنيد (زرنيخيد) الجاليوم Gallium Arsenide GaAs .

وتعتبر طاقاتها شكلا من الطاقة الحميدة والنظيفة . لأنه لايسفر عن تشغيلها نفايات ملوثة ولا ضوضاء ولا إشعاعات ولا حتي تحتاج لوقود. لأن هذه الخلايا الضوئية تعمل في صمت. لكن كلفتها الأبتدائية مرتفعة مقارنة بمصادر الطاقة الأخري . والخلايا الشمسية تولد كهرباء مستمرة و مباشرة (كما هو في البطاريات السائلة والجافة العادية).

شدة تيارها يعتمد علي سطوع ومستوي أشعة الشمس وكفائة الخلية الضوئية نفسها. يمكن لهذه الخلايا الشمسية إعطاء مئات الفولتات من التيار الكهربائي المستمر DC لو وصلت هذه الخلايا علي التوالي. كما يمكن تخزينها الفولتية الناتجة في بطاريات الحامضية المصنوعة من الرصاص أو القاعدية المصنوعة من معدني النيكل والكادميوم . ويمكن تحويل التيار المستمر DC إلي تيار متناوب AC بواسطة العاكسات ال Invertor للإستعمال وإدارة الأجهزة الكهربائية المنزلية والصناعية العادية.

تعني كلمة الفولتية الضوئية توليد الكهرباء مباشرة من الضوء عن طريق الخلايا الشمسية المصنوعة من مواد شبه موصلة كالسيليكون الذي يولد تيارا كهربائيا عند تعرضه لضوء الشمس. وأكبر محطة توليد كهرباء تعمل حاليا بالخلايا الشمسية توجد في سهل كاريزا بكاليفورنيا, وتعطي 5 ميحاوات. وتوجد محطات في ألمانيا تولد 10 ميجاوات. والخلايا الشمسية تعمل حاليا فوق الأقمار الصناعية منذ عام 1960 وحتي اليوم .وفي جميع الظروف المناخية حتي في الأيام التي تحتجب فيها أشعة الشمس وذلك عن طريق تخزين الطاقة المولدة بالبطاريات. لكن كفاءتها الكلية في توليد الكهرباءتحسب على اساس الايام المشرقة والايام المغيمة والتي تسبب كثرتها في ان تقل كفائة المنظومة.

من ميزتها أنها ليس بها أجزاء متحركة تتعرض للعطل. لهذا تعمل فوق الأقمار الصناعية بكفاءة عالية ، ولاسيما وأنها لاتحتاج لصيانة أو إصلاحات أو وقود, حيث تعمل في صمت, الا ان اتساخ الخلايا الضوئية نتيجة التلوث او الغبار يؤدي إلى خفض في كفائتها مما يستدعي تنظفها على فترات.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ميكانيكية تيار الخلايا الشمسية

الخلية الشمسية للتطبيقات الأرضية هي رقاقة رفيعة من السيليكون مشابة بمقادير صغيرة من الشوائب لإعطاء جانب واحد شحنة موجبة والجانب الآخر شحنة سالبة مكونة ثنائياً ذا مساحة كبيرة .

تولد الخلايا الشمسية قدرة كهربائية عندما تتعرض لضوء الشمس حيث الضوئيات ( الفوتونات ) والتي يحمل كل منها كماً طاقوياً محدداً يكسب الإلكترونات الحرة طاقة تجعلها تهتز حرارياً وتكسر الرابط الذري بالشبكة بالمادة الشبه موصلة ويتم تحرير الشحنات وإنتاج أزواج من الإلكترون في الفراغ . تنطلق بعد ذلك حاملات الشحنة هذه متجهة نحو وصلة الثنائي متنقلة بين نطاقي التوصيل والتكافؤ عبر الفجوة الطاقوية وتتجمع عند السطح الأمامي والخلفي للخلية محدثة سريان تيار كهربي مستمر عند توصيل الخلية بمحمل كهربي وتبلغ القدرة الكهربية المنتجة للخلية الشمسية عادة واحد وات.


أنواع الخلايا الشمسية التجارية

تم تصنيع خلايا شمسية من مواد مختلفة إلا أن أغلب هذه المواد نادرة الوجود بالطبيعة أولها خواص سامة ملوثة للبيئة أو معقدة التصنيع وباهظة التكاليف وبعضها لا يزال تحت الدراسة والبحث وعليه فقد تركز الاهتمام على تصنيع الخلايا الشمسية السيليكونية وذلك لتوفير عنصر السيليكون في الطبيعة علاوة على أن العلماء والباحثين تمكنوا من دراسة هذا العنصر دراسة مستفيضة وتعرفوا على خواصه المختلفة وملاءمته لصناعة الخلايا الشمسية المتبلرة ومتصدعة التبلر .

الخلايا الشمسية السيليكونية المتبلرة

تصنع هذه الخلايا من السيليكون عبر إنماء قضبان من السيليكون أحادي أو عديد التبلر ثم يؤرب إلي رقائق و تعالج كيميائياً وفيزيائياً عبر مراحل مختلفة لتصل إلي خلايا شمسية .

كفاءة هذه الخلايا عالية تتراوح بين 9 – 17 % والخلايا السيليكونية أحادية التبلر غالية الثمن حيث صعوبة التقنية واستهلاك الطاقة بينما الخلايا السيليكونية عديدة التبلر تعتبر أقل تكلفة من أحادية التبلر وأقل كفاءة أيضاً .

الخلايا الشمسية السيليكونية الأمورفية ( متصدعة التبلر )

مادة هذه الخلايا ذات شكل سيليكوني حيث التكوين البلوري متصدع لوجود عنصر الهيدروجين أو عناصر أخرى أدخلت قصداً لتكسبها خواص كهربية مميزة وخلايا السيليكون الأمورفي زهيدة التكلفة عن خلايا السيليكون البلوري حيث ترسب طبقة شريطية رقيقة باستعمال كميات صغيرة من المواد الخام المستخدمة في عمليات قليلة مقارنة بعمليات التصنيع البلوري . ويعتبر تصنيع خلايا السيليكون الامورفي أكثر تطويعاً وملاءمة للتصنيع المستمر ذاتي الآلية .

تتراوح كفاءة خلايا هذه المادة ما بين 4 – 9 % بالنسبة للمساحة السطحية الكبيرة وتزيد عن ذلك بقليل بالنسبة للمساحة السطحية الصغيرة وإن كان يتأثر استقرارها بالإشعاع الشمسي .


تطبيقاتها وتنفيذها

Polycrystaline PV cells laminated to backing material in a PV module
Polycrystalline PV cells

كما يمكن توليد الكهرباء باستغلال الحرارة المباشرة لأشعة الشمس ، باتباع تقنية الكهرباء الحرارية الشمسية solar thermal electricity التي تستخدم حاليا. ومن الملائم للدول التي تغمرها أشعة الشمس ، إستعمال هذه التقنية الواعدة لتوليد البخار من حرارة الأشعة الشمسية ، لإدارة توربينات توليد الكهرباء . لكن الحصول علي كهرباء من الحرارة الشمسية يعتبر مكلفا نسبيا ولاسيما وأن هذه التقنية قد دخلت المجال التجاري عام 1980 . فحاليا في أمريكا توجد محطات بخارية لتوليد الكهرباء من الطاقة الشمسية في صحراء كاليفورنيا تعطي 400ميجاوات أي ما يعادل 2,3مليون برميل نفط سنويا . وهناك فرص في عدة بلدان تغمرها اشعة الشمس لإتباع هذه التقنية ، من بينها مصر والهند والمكسيك والمغرب وأسبانيا واليونان . وسوف تتلقي هذه الدول معونات من وكالة البيئة العالمية لإقامة هذه المحطات البخارية التي ستعمل بالطاقة الشمسية عن طريق تركيز أشعة الشمس من فوق مساحات شاسعة بواسطة مرايا مقعرة أو عدسات لامة هائلة تركز الأشعة الشمسية لتقع فوق مستقبلات خاصة بها سائل كالزيت ، يمتص الحرارة ويدور في الأنابيب بالغلايات لتسخين الماء وتحويله لبخار يدير توربينات لتوليد الكهرباء.ويمكن الإستعانة في الأيام الغائمة أو بالليل بالمحروقات التقليدية كالفحم والنفط والغاز الطبيعي, لتسخين مياه الغلايات.


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

تطبيقات ذات قدرة منخفضة

وتشمل الأجهزة والمنظومات التالية :

- الحاسبات والألعاب الإلكترونية والساعات .

- أجهزة الإذاعة المسموعة وشاحنات وسائط القدرة المنخفضة .

تطبيقات ذات قدرة متوسطة

وتشمل المنظومات التالية :

الإنارة – أجهزة الإذاعة المرئية – ثلاجات اللقاح والأمصال – إشارات المرور والإنذار – مراوح الأسقف ( التهوية ) – هواتف الطوارئ – شاحنات السياج الكهربي .

حيث يشحن السياج المحاط بالمزارع وأماكن تربية الحيوانات لمنعها من الاقتراب منها .

تطبيقات ذات قدرة متوسطة وعالية

ضخ المياه – محطات اتصالات الموجات السنتيمترية – محطات الأقمار الصنـــــاعية الأرضية – الوقاية المهبطية لحماية أنابيب النفط والغاز والمنشآت المعدنية من التآكل – تغذية شبكة الكهرباء العامة .

كلفة كهرباء الخلايا الشمسية

تتراوح تكلفة الوات ذروة في الأسواق العالمية ما بين 8 إلي 10 دولارات بـــالنسبة للــدول المستوردة بينما تصل تكلفة الوات ذروة بالنسبة للتطبيقات ذات القدرة المتوسطة والقدرة المتوسطة و العالية إلي 30 دولار و تزيد هذه التكلفة وفق التصميم و أجهزة التحكم والتخزين الساكن و الإلكترونـات المساعدة إلا أن تكلفة الـوات ذروة بالنسبة للقدرة العاليــة (المحطات الكهـروشمسية ذات سعة الميجاوات) تقل قليلاً عن 20 دولار .

إن الاقتصاديات الحالية لتطبيقات ومنظومات الخلايا الشمسية وبعضها فعال التكلفة وبعضها الآخر غير ذلك وهي صورة ديناميكية تماماً حيث الأسعار و انخفضت خلال العقد الماضي

الشركات العالمية المصنعة للخلايا الشمسية

الشركات العالمية العاملة في هذا المجال كثيرة من بينها شركة سولار الألمانية – الفواتوات الفرنسية – اتيار سولار في إيطاليا – كرونار في يوغسلافيا – استروبور في كندا – وهيليودينايكا في البرازيل .

وشركات عديدة في الولايات المتحدة واليابان وهناك شركات متعددة الجنسيات أيضاً .

بعض مشاكل استخدام الطاقة الشمسية

إن أهم مشكلة تواجه الباحثين في مجالات استخدام الطاقة الشمسية هي وجود الغبار ومحاولة تنظيف أجهزة الطاقة الشمسية منه وقد برهنت البحوث الجارية حول هذا الموضوع أن أكثر من 50 % من فعالية الطاقة الشمسية تفقد في حالة عدم تنظيف الجهاز المستقبل لأشعة الشمس لمدة شهر .

إن أفضل طريقة للتخلص من الغبار هي استخدام طرق التنظيف المستمر أي على فترات لا تتجاوز ثلاثة أيام لكل فترة وتختلف هذه الطرق من بلد إلي آخر معتمدة على طبيعة الغبار وطبيعة الطقس في ذلك البلد .

أما المشكلة الثانية فهي خزن الطاقة الشمسية والاستفادة منها أثناء الليل أو الأيام الغائمة أو الأيام المغبرة ويعتمد خزن الطاقة الشمسية على طبيعة وكمية الطاقة الشمسية ، و نوع الاستخدام وفترة الاستخدام بالإضافة إلي التكلفة الإجمالية لطريقة التخزين ويفضل عدم استعمال أجهزة للخزن لتقليل التكلفة والاستفادة بدلاً من ذلك من الطاقة الشمسية مباشرة حين وجودها فقط ويعتبر موضوع تخزين الطاقة الشمسية من المواضيع التي تحتاج إلي بحث علمي أكثر واكتشافات جديدة .

ويعتبر تخزين الحرارة بواسطة الماء والصخور أفضل الطرق الموجودة في الوقت الحاضر . أما بالنسبة لتخزين الطاقة الكهربائية فما زالت الطريقة الشائعة هي استخدام البطاريات السائلة ( بطاريات الحامض والرصاص ) وتوجد حالياً أكثر من عشر طرق لتخزين الطاقة الشمسية كصهر المعادن والتحويل الطوري للمادة وطرق المزج الثنائي و غيرها .

والمشكـلة الثـالثة في استخدامات الطاقة الشمسية هي حدوث التـآكل في المجمعـات الشمسيــة بسبب الأمـلاح الموجودة في الميــاه المستخدمــة في دورات التسخــين وتعتبر الــدورات المغلقـة واستخـــدام مــاء خـال من الأملاح فيها أحسن الحلول للحد من مشكلة التآكل والصدأ في المجمعات الشمسية .


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

الدائرة المعادلة للخلية الشمسية

The schematic symbol of a solar cell

Energy conversion efficiency

solar cell's energy conversion efficiency

(, "eta"), is the percentage of power converted (from absorbed light to electrical energy) and collected, when a solar cell is connected to an electrical circuit. This term is calculated using the ratio of the maximum power point, Pm, divided by the input light irradiance (E, in W/m²) under standard test conditions (STC) and the surface area of the solar cell (Ac in m²).

STC specifies a temperature of 25°C and an irradiance of 1000 W/m² with an air mass 1.5 (AM1.5) spectrum. These correspond to the irradiance and spectrum of sunlight incident on a clear day upon a sun-facing 37°-tilted surface with the sun at an angle of 41.81° above the horizon.[1][2] This condition approximately represents solar noon near the spring and autumn equinoxes in the continental United States with surface of the cell aimed directly at the sun. Thus, under these conditions a solar cell of 12% efficiency with a 100 cm2 (0.01 m2) surface area can be expected to produce approximately 1.2 watts of power.

Fill factor

Another defining term in the overall behavior of a solar cell is the fill factor (FF). This is the ratio of the maximum power point divided by the open circuit voltage (Voc) and the short circuit current (Isc):

المواد الممتصة للضوء

الكتلة

سيليكون

البنية الأساسية لخلية شمسية سليكونية وآلية عملها.

الرقاقات

تليوريد الكادميوم CdTe

تليوريد الكادميوم هو مادة ممتصة للضوء بفعالية للخلايات الشمسية من الغلالات الرقيقة. وبالمقارنة بمواد الغلالات الرقيقة الأخرى، فإن CdTe هي الأسهل ترسيباً والأنسب للانتاج على نطاق واسع.


سلنيد النحاس-الإنديوم Copper-Indium Selenide

ربطات متعددة من أرسنيد الگاليوم

الصبغات الممتصة للضوء

تصنيع أجهزة الخلايا الشمسية السيليكونية

آلة حاسبة علمية تدار بالطاقة الشمسية


انظر أيضاً

  • ديزرتك، مشروع عملاق لتوليد الطاقة الشمسية في أفريقيا وتصديرها إلى اوروبا.

المصادر

موقع مركز المدينة للعلم والهندسة

  1. ^ ASTM G 173-03, "Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface," ASTM International, 2003.
  2. ^ "Solar Spectral Irradiance: Air Mass 1.5". National Renewable Energy Laboratory. Retrieved 2007-12-12.