أنتيمونيد الإنديوم Indium antimonide

(تم التحويل من Indium antimonide)
أنتيمونيد الإنديوم
Indium antimonide
Ball and stick cell model of indium antimonide
Sample of crystalline indium antimonide
المُعرِّفات
رقم CAS
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.013.812 Edit this at Wikidata
رقم EC
  • 215-192-3
رقم RTECS
  • NL1105000
UNII
UN number 1549
الخصائص
الصيغة الجزيئية InSb
كتلة مولية 236.58 g mol-1
المظهر Dark grey, metallic crystals
الكثافة 5.7747 g⋅cm−3[1]
نقطة الانصهار
الفجوة الحزمية 0.17 eV
حركية الإلكترون 7.7 mC⋅s⋅g−1 (at 27 °C)
التوصيل الحراري 180 mW⋅K−1⋅cm−1 (at 27 °C)
معامل الانكسار (nD) 4[2]
البنية
البنية البلورية Zincblende
الزمرة الفراغية T2d-F-43m
ثابت العقد a = 0.648 nm
هندسة
إحداثية
Tetrahedral
الكيمياء الحرارية
الإنتالپية المعيارية
للتشكل
ΔfHo298
−30.5 kJ·mol−1
Standard molar
entropy
So298
86.2 J·K−1·mol−1
سعة الحرارة النوعية، C 49.5 J·K−1·mol−1
المخاطر
ن.م.ع. مخطط تصويري The exclamation-mark pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) رمز البيئة في النظام المنسق عالمياً لتصنيف وعنونة الكيماويات (GHS)
ن.م.ع. كلمة الاشارة WARNING
H302, H332, H411
P273
مركبات ذا علاقة
Indium nitride
Indium phosphide
Indium arsenide
ما لم يُذكر غير ذلك، البيانات المعطاة للمواد في حالاتهم العيارية (عند 25 °س [77 °ف]، 100 kPa).
YesY verify (what is YesYX mark.svgN ?)
مراجع الجدول

أنتيمونيد الإنديوم (InSb) is a crystalline compound made from the elements indium (In) and antimony (Sb). It is a narrow-gap semiconductor material from the III-V group used in infrared detectors, including thermal imaging cameras, FLIR systems, infrared homing missile guidance systems, and in infrared astronomy. Indium antimonide detectors are sensitive to infrared wavelengths between 1 and 5 μm.

Indium antimonide was a very common detector in the old, single-detector mechanically scanned thermal imaging systems. Another application is as a terahertz radiation source as it is a strong photo-Dember emitter.

التاريخ

The intermetallic compound was first reported by Liu and Peretti in 1951, who gave its homogeneity range, structure type, and lattice constant.[3] Polycrystalline ingots of InSb were prepared by Heinrich Welker in 1952, although they were not very pure by today's semiconductor standards. Welker was interested in systematically studying the semiconducting properties of the III-V compounds. He noted how InSb appeared to have a small direct band gap and a very high electron mobility.[4] InSb crystals have been grown by slow cooling from liquid melt at least since 1954.[5]

In 2018, a research team at Delft University of Technology claimed that indium antimonide nanowires showed potential application in creating Majorana zero mode quasiparticles for use in quantum computing; Microsoft opened a laboratory at the university to further this research, however Delft later retracted the paper.[6][7]

الخصائص الطبيعية

InSb has the appearance of dark-grey silvery metal pieces or powder with vitreous lustre. When subjected to temperatures over 500 °C, it melts and decomposes, liberating antimony and antimony oxide vapors.

The crystal structure is zincblende with a 0.648 nm lattice constant.[8]

الخصائص الإلكترونية

InSb infrared detector manufactured by Mullard in the 1960s.

InSb is a narrow direct band gap semiconductor with an energy band gap of 0.17 eV at 300 K and 0.23 eV at 80 K.[8]

Undoped InSb possesses the largest ambient-temperature electron mobility of 78000 cm2/(V⋅s),[9] electron drift velocity, and ballistic length (up to 0.7 μm at 300 K)[8] of any known semiconductor, except for carbon nanotubes.

Indium antimonide photodiode detectors are photovoltaic, generating electric current when subjected to infrared radiation. InSb's internal quantum efficiency is effectively 100% but is a function of the thickness particularly for near bandedge photons.[10] Like all narrow bandgap materials InSb detectors require periodic recalibrations, increasing the complexity of the imaging system. This added complexity is worthwhile where extreme sensitivity is required, e.g. in long-range military thermal imaging systems. InSb detectors also require cooling, as they have to operate at cryogenic temperatures (typically 80 K). Large arrays (up to 2048×2048 pixels) are available.[11] HgCdTe and PtSi are materials with similar use.

A layer of indium antimonide sandwiched between layers of aluminium indium antimonide can act as a quantum well. In such a heterostructure InSb/AlInSb has recently been shown to exhibit a robust quantum Hall effect.[12] This approach is studied in order to construct very fast transistors.[13] Bipolar transistors operating at frequencies up to 85 GHz were constructed from indium antimonide in the late 1990s; field-effect transistors operating at over 200 GHz have been reported more recently (Intel/QinetiQ).[بحاجة لمصدر] Some models suggest that terahertz frequencies are achievable with this material. Indium antimonide semiconductor devices are also capable of operating with voltages under 0.5 V, reducing their power requirements.[بحاجة لمصدر]

طرق النمو

يمكن تنمية أنتيمونيد الإنديوم InSb بتصليب صبة من الحالة السائلة (طريقة تشوخرالسكي)، أو بنمو فوقي باستخدام النمو الفوقي بالطور السائل أو النمو الفوقي على جدار ساخن أو رص البلورات بشعاع جزيئي. كما يمكن أن تنمو من مركبات الفلزات العضوية بواسطة MOVPE.[بحاجة لمصدر]

تطبيقات الجهاز

المراجع

  1. ^ خطأ استشهاد: وسم <ref> غير صحيح؛ لا نص تم توفيره للمراجع المسماة crc
  2. ^ Haynes, pp. 12.156
  3. ^ Liu, T.S.; Peretti, E.A. (1951). "The Lattice Parameter of InSb". Trans AIME. 191: 791.
  4. ^ Orton, J.W. (2009). Semiconductors and the Information Revolution: Magic Crystals that Made IT Happen. Academic Press. pp. 138–9. ISBN 978-0-444-53240-4.
  5. ^ Avery, D G; Goodwin, D W; Lawson, W D; Moss, T S (1954). "Optical and Photo-Electrical Properties of Indium Antimonide". Proceedings of the Physical Society. Series B. 67 (10): 761. Bibcode:1954PPSB...67..761A. doi:10.1088/0370-1301/67/10/304.
  6. ^ Dedezade, Esat (2019-02-21). "Microsoft's new quantum computing lab in Delft opens its doors to a world of possibilities". Microsoft News Centre Europe (in الإنجليزية البريطانية).
  7. ^ Kaku, Michio (2023). Quantum Supremacy (1st ed.). New York: Doubleday. p. 96. ISBN 978-0-385-54836-6.
  8. ^ أ ب ت Properties of Indium Antimonide (InSb). ioffe.ru
  9. ^ Rode, D. L. (1971). "Electron Transport in InSb, InAs, and InP". Physical Review B. 3 (10): 3287–3299. Bibcode:1971PhRvB...3.3287R. doi:10.1103/PhysRevB.3.3287.
  10. ^ Avery, D G; Goodwin, D W; Rennie, Miss A E (1957). "New infra-red detectors using indium antimonide". Journal of Scientific Instruments. 34 (10): 394. Bibcode:1957JScI...34..394A. doi:10.1088/0950-7671/34/10/305.
  11. ^ Beckett, M.G. (1995). "3. Camera". High Resolution Infrared Imaging (PhD). Cambridge University. uk.bl.ethos.388828.
  12. ^ Alexander-Webber, J. A.; Baker, A. M. R.; Buckle, P. D.; Ashley, T.; Nicholas, R. J. (2012-07-05). "High-current breakdown of the quantum Hall effect and electron heating in InSb/AlInSb". Physical Review B. American Physical Society (APS). 86 (4) 045404. Bibcode:2012PhRvB..86d5404A. doi:10.1103/physrevb.86.045404.
  13. ^ Will Knight (2005-02-10). "'Quantum well' transistor promises lean computing". New Scientist. Retrieved 2020-01-11.

المصادر المذكورة

وصلات خارجية

قالب:Antimonides