كائن ماغما

في الرياضيات ، يمكننا تعريف كائن ماغمي Magma object أو ماغما ضمن تصنيف magma in a category ضمن تصنيف رياضي خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{C}} equipped with a distinguished bifunctor خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \otimes : \mathbf{C} \times \mathbf{C} \rightarrow \mathbf{C}} . Since Mag, the category of magmas, has cartesian products, we can therefore consider magma objects in the category Mag. These are called auto magma objects. There is a more direct definition: an auto magma object is a set خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} together with a pair of binary operations خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle f,g:X\times X \rightarrow X} satisfying خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(f(x,y),f(x',y')) = f(g(x,x'),g(y,y'))} for all خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle x,x',y,y'} in خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} . A medial magma is the special case where these operations are equal.

مزود بجداء ديكارتي. ويعتبر شكلا داخليا لتعريف العملية الثنائية ضمن التصنيف .