فضاء صفري البعد

في الرياضيات، الفضاء الطبولوجي صفري البعد ( zero-dimensional topological space أو nildimensional space) هو فضاء طبولوجي له البعد صفر فيما يتعلق بواحد من several inequivalent notions of assigning a dimension to a given topological space.[1] A graphical illustration of a nildimensional space is a point.[2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

التعريف

تحديداً:

  • A topological space is zero-dimensional with respect to the Lebesgue covering dimension if every open cover of the space has a refinement which is a cover by disjoint open sets.
  • A topological space is zero-dimensional with respect to the finite-to-finite covering dimension if every finite open cover of the space has a refinement that is a finite open cover such that any point in the space is contained in exactly one open set of this refinement.
  • A topological space is zero-dimensional with respect to the small inductive dimension if it has a base consisting of clopen sets.

The three notions above agree for separable, metrisable spaces.[بحاجة لمصدر][مطلوب توضيح]


خصائص الفضاءات ذات بعد صفري منخفضة الحث

الطيات

All points of a zero-dimensional manifold are isolated.

الكرة الفائقة

The zero-dimensional hypersphere (0-sphere) is a pair of points, and the zero-dimensional ball is a single point.[3]

ملاحظات

  • Arhangel'skii, Alexander; Tkachenko, Mikhail (2008). Topological Groups and Related Structures. Atlantis Studies in Mathematics. Vol. 1. Atlantis Press. ISBN 978-90-78677-06-2.
  • Engelking, Ryszard (1977). General Topology. PWN, Warsaw.
  • Willard, Stephen (2004). General Topology. Dover Publications. ISBN 0-486-43479-6.

المراجع

  1. ^ Hazewinkel, Michiel (1989). Encyclopaedia of Mathematics, Volume 3. Kluwer Academic Publishers. p. 190. ISBN 9789400959941.
  2. ^ (2012) "Imagining Negative-Dimensional Space".: 637–642, Phoenix, Arizona, USA: Tessellations Publishing. 
  3. ^ Gibilisco, Stan (1983). Understanding Einstein's Theories of Relativity: Man's New Perspective on the Cosmos. TAB Books. p. 89. ISBN 9780486266596.