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FORWARD

This book is intended to familiarise students with the analytical approach to the
essential fundamentals of fluid mechanics. Hence it dwelled on simple but rigorous
applications ef the physics laws to continuum and channel flows of fluids, Ideal
flow conditions were assumed in certain parts of the analysis. In other parts the
concept of friction (viscosity} was introduced to present the flow of real fluids to the
students. Elaborate solved examples were given where it was felt TIECESSATY.

It is believed that in this form- the book should offer fairly broad foundations of
tluid mechanies for engineering students presented in simple analytical but concise
manner, It is hoped that engineering students when presented by this introduction
will find iteasyto handle further studies of fluid mechanics whatever Lheir speciali-
zations may be, civil, mechanical aeronautical or chemical.

The book may be used as a text for students taking the first course in fluid
mechanics. Three hours lecturing per week for one semester should be enaugh for
such course if supplemented by reasonable tutorial periods.
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CHAPTER ONE
FUNDAMENTALS

1 —1— Fluids

A fluid is a marterial whose particles would be displaced under the action of the
slightest shearing stress. A marterial possessing this property will flow readily under
the effect of any magnitude of shear stresses. IF the rate of shear deformation is
grall, the fluid offers negligitsle resistance. With increased rate of deformation it
offers increased resistance. The fluid resistance disappears, however, once the
deforming motion ceases. The resistance arises from the existence of viscosity in the
fluid.

Fluids are conventionally classified as
a- Liguids, or
b— Gases and Vapours.

A liguid is a fluid which, at a given temperature occupies a definite volume which
iz little affected by change in pressure, Poured into a stationary container, the liquid
will aecupy the lower part of the container and form a free level surface. Ligquids
‘offer considerable resistance (comparable to that of solids) to compression siresses,
but they offer negligible resistance to tensile stresses,

A pas or vapour has the property that when a quantity of it, however small, is
placed in an otherwise empty closed vessel it fills the vessel completely. In other
words gases and vapours would expand unless constrained, and because of this
property it seems impossible to create tensile stresses in a gas. Gases, unlike liquids,
offer widely varyving resistance to compression stresses, the variation depending on
different parameters.

The properties which can be used to distinguished between liguids and gases are
the following

1. The bulk modulus of elasticity which indicates the ability of the fluid for com-
pression. Gases are normally casier to be compressed than liguids.

2.The density of the fluid:where gases are normally less dense than liquids.

The ideal fluid is an imaginary fluid which does not have any internal friction and
may be called non-viscous fluid or inviscid fhaid.



1 -2 — Continuum and Fluid Properties

Fluids are made of molecules and between the molecules are voids (much longer
than the malecules themselves), The molecules are in continuous random motion. In
dealing with fluid mechanics one becomes interested in the overall motion of the
fluid instead of the motion of each molecule. The continuum concept is to assume
that the fluid is a continuous medium instead of molecules with mean free paths
between the molecules. This concept of continuum is widely accepted by engineers
and is found to help establishing an accurate rule for the determination of average
properties for various fluids.

For example, the density of a fluid continuum at a point is defined as

. m
gl g (1.1)
AT

where m is the mass of a fluid contained in the volume V at the limit when the
volume V is reduced to its lowest possible limit V*. The limiting volume ¥* although
iz very small it still should be consistent with the continuum concept, i.e. it contains
a large number of molecules. To get an idea about how small is V* it may become
worthy to mention that | em? of air at normal temperature and pressure contains
about 2 x 10" molecules.

Similarly the pressure of the fluid at a point is defined as follows

p= lim L (1.2)
A Ar A

where F is the time-gverage normal force exerted by the molecules on the surface A
as A tends to its lower limit of A®. Again the dimension of A* must be much larger
than the distance between the moelecules.

The specitic volume of a fluid v is defined as follows

(1.3)

-
1
=4

while the specific gravity s of & fluid is a measure of comparing the fluid density to
the density of water at a given reference temperature, thus

[+
FMs (1.4
ﬂb.'l
The specific weight ¥ of a {luid is defined as follows
(1.5

¥ =02

=]



Table (F.2), (F.3), and (F.4) give the values of p for various fluids.

I —-3— The Perfect Gas
A perfect gas is defined as the gas that obeys the relation

pv = RT (1.6)

where p is the absolute pressure of the gas, v is its specific volume, R is the gas cons-
tant and T is its absolute temperature. Other variants of the perfect gas relation are
given as Tollows

P=pRT {1y

eV = m R T (1.8)
where p is the density of the gas V iz its volume and m is its mass. Values of the gas
constant for various gases are given in Table (F.5).

| —4— Process

The path of all states of the fluid as it changes from one state to another is known
by a Y process™. A fluid can go from an initial state to a final state via many possible
processes. The most important processes are defined below.

An isothermal process is the process which keeps the temperature constant, For a
perfect gas, using Eq (1.6) the isothermal process is then described by the fellowing
equation

pv = consl {19]

The isobaric process is the process that maintains constant pressure, I the process is
carried out such that no heat is exchanged between the fluid and the surroundings
then the process is said to be “*adiabatic™’. When the process is also “‘reversible’
{Le. frictionless) in addition to being adiabatic the process is then called
“isentropic’’. For a perfect gas the isentropic process is  described by the relation

pu = constant (1.1

where ¢ is the ratio of the specific heal at constant pressure to that at a constant
volume. The value of y for various gases is given in Table (F.5).

The following relations can be derived from Eqs. (1.6) and (1.10) for a perfect gas
under an isentropic process

T (y=1)/y
b oo o9 1.11
T ( ) ) (1.11)
Liy
o o
= =y (1.12)
1 R



EXAMPLE 1-1
Alr at 20°C and 100 k Pa abs is compressedto 200 k Pa abs. Calculate the final
temperature and densily if the compression process is
a) isothermal by isentropic
Data of the Problem
* Initial conditions of air:
T, =20+ 273 = 293K
P, = 100 kFa abs = 107 Pa abs
* Final pressure = P, = 2 x [0% Pa abs

Reguirements
* T, and p, for
a) isothermal compression
b} isentropic compression

Solution
a) Isothermal compression
Ty =T; =20°C
From Eq. (1.7} we have

b=

2

P2

i

ll"}
From Appendix F, B = 287 J Jkp K, then

. _2_‘}:1(]5 = 3 '8
Pa 7 <703 " 2.38 ka/m

b} Isentropic compression
Using Eq. {1.11),

¥ Cy=1)/y

—1
il
-
oy
)

1

The value of y is obtained from Table (F.5) as 1.4, then

0.4
*
T, = 293 (% 108 235717 %
= 84,17°C
Using Eq. (1.7}

o, S i :

o v =x10 - 1 k!

°3 T RT Z87x357.17 © 195 ke/m

i




| —5— Vapour Pressure

The hoiling temperature of a liguid depends on the acting pressure on the liguid.
This boiling temperature increases with the increase of the acling pressureand vice
versa. For example water boils at about 99.64°C when the pressure is 10° Pa, at
B1.35°C ifp = 0.5 = 10° Pa, and at 32.88°*C if P = Q.05 x 10° Pa. The pressure
required for boiling of a liquid at a given temperature is termed the *“vapour pres-
sure’’. At a given temperature a liquid will boil if the acting pressure on the fluid is
equal to or less than the vapour pressure of the liquid at the given temperature.
Table (F. &) illustrates the vapour pressures for various liquids at different tempera-
tures.

The importance of the vapour pressure may be well understood by taking the
example of water flowing in-a pipe svstem. At normal ambient temperature water
may hoil in some parts of the pipe system if the local pressure becomeslowerthan the
vapour pressure of the water corresponding o the operating water lemperature.
This phenomencn is known as cavitation and may cause a serious reduction of the
flow rate, due to evaporation of water, and consequently may burn the pumps.
Vapour pressure is also important in many other applications in [luid mechanics,

EXAMPLE 1-2
Which of the following fluids may boil?
a) water at 20°C and 2 kPa abs
b) water at 40°C and 2 kPa abs
¢) mercury at 13°C and 0.1 kPa abs.
d) benzene at 20°C and 9 kPa abs.

Data of the Problem
a) water: T = 20°C , P = 2 kPa abs
by water: T = 40°C , P = 2 kPa abs
cymercury: T = 15°C , P = (L1 kPa abs
d) benzene: T = 20°C , P = 9 kPa abs

Bequirements
Check whether the fluid will boil or not.

Solution
Using Table (F. &) we get the following

a) water at 20°C, (Py)y; = 2.34 kPa abs
i.e. water boils since P << Py,

b) water at 40°C, (Pylyy = (Pylag
since P < (Py)yy
then P must be less than (Pyy,
i.e. water boils

¢) mercury at 15°C, (Py)ys, = 0.00017 kPa abs

5



but (Py)ys < (Pyhs
Therefore, P = (Py)isg = {PV}!,‘.
i.e. mercury does not boil

d) benzene at 20°C , Py, = 10 kPa abs
since P <C Py,
Then benzene boils

1 —6— Compressibility

Fluids can be deformed by two means; shearing or compression. When a fluid is
compressed, the degree of compression depends on the tvpe of luid, the origingl
volume, and the applied pressure. Theoretically, a fluid may be treated as an elastic
medium that stores the compression energy and recavers it asthe applied pressure is
removed, Similar to solids, the fluid modulus of elasticity, or the fluid bulk modulus
is defined as follows

d
Z I (1.13)

where dp isthe change of pressure and dV is the change in the original volume V,
Other varianis of Eg. (1.13) can be derived as below

K (1.14)
viv

Fsl
A (1.15)

a

The bulk modulus K is a property of the fluid and its value depends on the acting
pressure and the fluid temperature. Also, the value of K depends on the type of the
compression process. Thus for isothermal compression, the isothermal bulk
modulus of the fluid becomes

o d d d
“isoth = {H'E.E'I..}T = b (HVEV]T - (Hp?p],]. (1.16)

Anather property which is of importance in fluid mechanics is the coclficient of
compressibility defined as follows

wilige | A AW 1.17

i v I (A7)
1 d

8 = = .

) Ef% (1.18)

Generally, liguids are harder to compress than gases. For this reason it is common
under moest cases to treat liquids as incompressible fluids. Tyvpical values of the iso-
thermal bulk modulus K of water at 20°C and atmospheric pressure is 2,18 = 10%

6



Pa while that of air at the same conditions of temperaturc and pressureis 107 Pa,

For perfect gases the expressions for K can be derived through using Egs. (1.7},
{1.10), and (1.13). The results for isothermal and iseniropic compression are, res-
pectively, as follows

Kiso:h =P (1.19)
Kisn:rlt =¥p (1.209

-7~ Speed of Sound
The speed of sound in g (luid is defined in terms of the isentropic bulk modulus

K as follows

isenl
a =41 g (1.21)
o 1zent

The speed of sound in a perfect zas under an isenlopic process then beeomes

1.22
i =/§ = JyRT (1.22)

EXAMPLE 1-3
Caleulate the speed of sound in the Tollowing fluids
a) air at 20°C and 100 kPa abs
by air at 100°C and 100 kPa abs
¢) water at 20°C and 100 kPa abs

Data of the Problem
a)air: T = 20°C , p = 10° Paabs
byair: T = 100°C , p = 10° Pa abs
¢) water: T = 20°C, p = 10% Pa abs
Reguirements
To calculate the speed of sound in each case

Solution
a) From Table (F.5), ¥ = 1.4, R = 287.1. Using Eq. (1.22} we get

a = /YRT = /1.4x287.1x(20+273) = 343.2 m/s

b} Assuming negligible change in the value of y with temperature, then

a =/vRT = ¢ 1.4x287.1x[100+273) = 387.2 m/s
¢) From Table (F.6), K = 2.069 % 10° Pa, then using Eq. (1.21) gives

7



a= /2 = ST - 1d38 /s

| — 8~ Viscosity

Viscosily is the property which makes fluids offer resistance to shearing. Shearing
in fluids iz manifested when adjacent particles travel at different velocities, There-
fore, in a uniform constant velocity flow shearing would not exist,

It is established by many and thorough investigations particularly of the flow of
liquids in pipes, that if a fluid flows over a rigid boundary there will be no relative

U

C o

Stationary

Fig. 1.1 Fluid motion between two parallel flat plates

velocity at the common surface between the fluid and the boundary (this is known as
the no slip condition). Having this fact in mind, let us imagine two parallel flat
plates AB and CD, Fig. (1.1}, at a distance h from each other, with the space bet-
ween them filled with a uniform fluid and the upper plane CD moving uniformly
and unidirectionally with velocity U. According to the no slip condition it now fol-
lows Lhat the layer of the fluid adjacent to the plate AR will be stand still, while the
laver adjacent to the plate CD will be travelling at a velocity U. The lavers of the
fluid filling the space between the two plates will be travelling at different velocities
u ranging from almost zero near to the plane AB and increasing gradually to a velo-
city almost equal to U near the plate CD. The observation showed that for a certain
class of fluids the shear stress at any laver at distance v from plate AB vary linearly
with the velocity zradient with respect to the distance v, i.c.

ar
£ =y du (1.23)



where u is called the dyvnamic viscosity or simply the viscosity, The units of the
dynamic viscosity is Pa s, i.e. N.s/m2.

Real fluids have non-zero values for their viscosities. An ideal fluid is thus defined
as the fluid with zero viscosity and may alsobe called non-viscous fluid. The value of
the dynamic viscosity of a fluid is generally temperature dependent, For iiquids the
value of ¢ decreases with the increase in the temperature while for gases, M increases
- with the increase in the temperature. Values of g for various liquids and gases are
given in Fig. (F. 1) for various temperatures.

The kinematic viscosity of the fluid vis defined as the ratio of the dynamic visco-
sity of the fluid to its density, i.e.

f
1
ol

(1.24

The imiportance of this quantity appears in many fluid mechanics applications
where the ratio p/p appears quite often. Values of vfor various liquids and gases are
given in Figs. (F. 2) and (F. 3}, respectively.

The fluids that follow Eq. (1.23) with u independeni of the velocity gradient
du/dy are called Mewtonian fluids. Examples of Newtonian fuids are water, air,
oil, kerosene, helium and many dthers. Non-Newtonian fluids are those fluids that
do not follow Eq. (1.23) unless u depends on the velocity gradient du/dy. Example
of non-Mewtonian fluids are bloed, tar and slurries.

EXAMPLE 14
In Fig. (1.1} if U=20 m/s and h=2 mm, calculate the shear stress on each plate
when water is the fluid between the two plates.

Data of the Problem

*U=2ms

*h = 2 mm

* Fluid is water

* Linear variation in the velogity
Requirements

* shear stress on the upper and lower plates

Solution
For linear variation of velocity,

du _ U0 =0 _

i
qy i h



Assuming room temperature and wsing Fig (F1. 1) gives
o= 0001 Pa.s. Using Eq. (1.23) we get

du 20
iy . N &
“]uppcr J{Er}f;=h Q.001 x m 10 Pa
() youer u{%] = 0.001 x aﬁg-ﬁ = 10 Pa
y=o ’

1 =9 —Surface Tension

Surface tension is a property of a fluid caused by the forces of attraction between
like molecules called cohesion and those of unlike molecules called adhesion, At the
interior of a fiuid the cohesive forces balance each other. However at the separating
layer between the fluid and another fluid or solid the adhesive and cohesive forces
are not balanced. The net force of the cohesive and adhesive forces is known as the
surface tension force I, which is proportional to the length of the free surface L,
Thus, one may write that.

& FSL o Lr‘s

E.=ml (1.25)

st “f5

where o is the coefficient of surface tension which is a2 property of the two fluids
around the free surtace, Table (F. 7) shows values of o for various fluid combina-

tions,

external pressure p,

internal
Pressure p
i

sk Water droplet
.-"'-'-'-'-F.‘F
Surface
tension [oroe

Fig. 1.2 Balance of water droplet under surface tension and external and internal pres-
FUTES

10



One of the examples of the applications of the surface tension is water droplets
which takes its shape and kecps the water molecules together as a result of the sur-
face tension. Assuming a spherical water drop as that shown’in Fig (1.2), with
internal pressure P; and external surrounding pressure P the application of Eq.
[1.25) zgives

ol
Fog = fPi g ]3021 % d° =o. md
or
< E 1] (1.26)
pi PL} o

where d is the diameter of the water droplet.

Another application of the surface tension is the capillary action which is illus-
trated as follows, Consider, for example, a vertical capillary tube {(of small dia-
meter} partially immersed in a liguid as illustrated in Fig (1.3a). The liguid inside the
tube may rise or depress depending on the wetability of the liguid to the solid sur-
face. Liquids that wet the tube walls rise and those do not wet the walls depress as
illustrated by Fizs (1.3b and ¢), respectivelly. The forces balance of the liguid rise of
Fig (1.3a} gives

F i cos8 = weight of liquid rise

i.e = i
ord cosB = pg ( £ d% ) h
18
hoo= Ao cosd
pgd

(1.27)

where g is the angle of contact between the liquid [ree surface and the solid wall,
The above equation indicates that the liguid rises, i.e., positive h, if the liquid wets
the surface { < 90) and the liguid depresses, i.e. negative h, if the liguid does nat
wet the surface (9> 90).

EXAMPLE 1-5

Calculate the difference between the inside and outside pressure of a water dro-
plet of diameter 2mm.

Data of the Problem
* water droplet, d = 0.002 m

Reguirements
* Calculate P, — P

=

11



Solution
Using Table (F.7) gives, g = 0.073 N/m
Applying Eq, (1.268) vields,

4a
1, - p o=
i By T 3
4 x 0,073 _ L.
* —o.007 ~ *° 146 Pa
r‘\;a< >@/ -

STIZZZIZZC20  liquid

{a} Vertical capillary tube partially submerged in a liquid

glass glass
surface surface

S

0=10
——— = 3(°
=
Water Mereury
.
(b) weted surface (c) non-weted surface

Fig. 1.3 Effect of surface tension on (a) capillary attraction (B} weted surface, and (c)
non-weted surface

L2



PROBLEMS ON CHAPTER ONE

Problems on Sections 1— 110 1 -5

1.1 Calculate the air pressure in an automobile tire of orginal pressure of 300 kPa
abs at 25°C if the temperature becomes
a) — 10°C
by 40°C
Assume no appreciable change in the volume of the tire,

1.2 A rigid tank of volume 0.05m? contains 0.5 kg air. What will be the pressure
in the tank if the remperature becomes 30°C7

1.3 Air is maintained at atmospheric pressure (100 kFPa abs), Calculate the density
of air at
3} oy 2[]-:\‘: L::] EGDC
b:] UDC dl] 4{3”C

1.4 Calculate the density of air at 0.2 MPa abs and temperatures of 30,100, and
2000,
1.5 Air is maintained in a balloon of volume 3m? at150 kPa abs and 30°C. Caleu-

late the velume of the balloon if the pressureis increasedto &00 kPa abs while the
temperature is kept constant.

Problems on Sections 1 -6 and 17

1.6 Caleulate the isothermal bulk modulus of air at atmospheric pressure and
WrC.

1.7 Caleulate the required increase of pressure to reduce a given volume of water
at atmospheric pressure by about 1%,

1.8 Calculate the bulk modulus of fluid A if its volume is reduced from 1 liter te
0.99 liters as the acting pressure is increased from 1 MN/m# abs to 3MN/m? abs.

1.9 Five hiters of water are maintained at atmospheric pressure and temperature
of 20°C. If the pressure on the water is increased to 81 atmosphere, calculate the
changze in the volume of the water and its percentage of the original volume.

1.10 Caleulate the speed of sound in the following mediums
a) Air at 30°C and 10° Pa abs.
b) Helium at 30°C and 10% Pa abs.
) Air at 30°C and 107 Pa abs.
d) Adr at 300°C and 10° Pa abs.
e) Water at 30°C and 10° Pa abs.
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Problems on Section 1—8

1,11 Water at 30°C flows over a solid wall with a velocity profile given by u=40y
~ 1.2 % 10% 2, m/s, where v is the distance from the wall in water. Calculate the

shear stress on the wall.

1.12 Calculate the power required to rotate a 20 cm diameter shaft with constant
angular speed of 2000 r/min inside a bearing of 20,06 cm in  diameter and 30 cm
long. The space between the shaft and the bearing containg o1l of viscosity p = 0.02
kgdm.s.

1.13 Find the kinematic viscosity and dynamic viscosity of the following fluids
a) Water at 20°C and 10° Pa abs.
b) Air at 20°C and 10% Pa abs.
¢} Helium at 20°C and 10° Pa abs.
d) Kerosene at 20°C and 10° Pa ahs,
g} Mercury at 20°C and 10° Pa abs.

1.14 The velocity profile of water flowing near a solid surface is given by the fol-
lowing equation

u = 4 v+ where u is the velocity in m/s and v is normal distance from the

wall in m_ Calculate the velocity gradient and the shear stress at v =0, 0.2, 0.5 m

1.15 Calculate the approximate viscosity of the oil in Fig. {1.4)

Im = lmosgquare plate
ol (L5 kg mass

14



Problems on Section 1 -9

1.16 Calculate the pressure in a water droplet of diameter 0.05 mm at 30°C i the
outside pressure is atmospheric. At same temperature and external pressure, what
will be the internal pressure of the droplet if its diameter becomes 0.1 mm?

1.17 What is the diameter of a water droplet at 30°C when its internal pressure is
about 3% greater than the outside pressure?

1.18 Calculate the maximum capillary rise of water (20°C) 1o be expected in a
vertical glass tube 1mm in diameter.

1.19 Calculate the maximum capillary depression of mercury to be expected in a
vertical glass tube Imm in diameter at 15.57C.

General Problems on Chapter 1

1.20 The velogity distribution of a pipe flow is given by

2

¥

7= -p

where U is the maximum centerline velocity, R is the pipe radius and r is the distance
from the centerline, If UJ = 10 m/s and B = 5 cm, calculate the shear siress on the
wall if the flowing fluid is

a) Water at 20°C

b} air at 20°C and 100 kPa abs,

1.21 Oil with density of 850 kg/m? flows through a 10 cm diameter pipe. The
shear stress at the pipe wall is measured as 3.2 Pa and the velocity profile is given by

w=1- 800l

where 1 is the radial distance from the pipe centerline in meters. Calculate the
kinematic viscosity of the oil.

1.22 Derive the dimensions of the following quantities
a) vapour pressure
b) density
c) specific gravity
d) specific volume
e) dynamic viscosity
N kinematic viscosity
g2) surface tension

1.23 Adr at 15°C and (.15 MPa abs is compressed isentropically to half the ocd-
ginal volume. Calculate the final presswie and temperature and the speed of sound

15



in air before and after compression,

1.24 Derive the equation for the vertical capillary rise between vertical parallel
plales,

1.25 A fluid is placed in the 0.5 mm clearance between two parallel plates, The
lower plate is stationary while the upper one moves with uniform velocity of 0.5
m/s. Assuming linear variation of the fluid velocity, caleulate the shear stress at the
upper and lower plates if the fluid is

a) Water
b} Kerosene.
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CHAPTER TWO
FLUID STATICS

2—1- Introduction

This chapter deals with fluid statics, i.e. fluid at rest. Generally, the fluid can not
resist any shearing force where the latter would result in fluid flow,. Therefore, the
forces on a fluid at rest must be perpendicular to any plane. This causes the pressure
at any point in a static fluid continuum to be the same in all directions. In this
chapter we shall derive the hydrostatic equation for the pressure gradient in the fluid
under the effect of gravitational field. This equation is considered a good base to
study many subjects such as measurement of pressure by manometers, forces due to
hydrostatic pressure, buoyancy and static stability of floating bodies. These subjects
are useful in studying many engineering problems such as forces on dams or any
submerged body, pressure variation in the atmosphere and ships design,

2=2~ Concepi of Pressure

The pressure at a point in a fluid continuum is defined as the magnitude of the
normal compression force per unit surface area surrounding the point. As stated
before, a fluid in static eguilibrium can not sustain shear stresses. Bearing this in
mind, let us study the forces on an infinitesimal fluid element in static equilibrium as
shown in Fig. (2.1). The figure is an arbitrary shape of a rectangular prism with
base dimensions as given and a unit depth perpendicular Lo the base. At static equi-
libriumm, the forces in the x and v directions are given as follows.

IF =% .dv - P _ .dg . sin o [21':1}
¥ [
= . - Py _dx dy 2.1
ot o ?x.dx ps.r!s . Cos o 5 (2.1b)

where
P,, P, and P_are the external pressures on the faces dx, dy and ds respectively,
p is the density of the fluid and

w is the weight of the element =FE: dx.dy

From the geometry, we have ds = dy = dx
51N CoE0
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Substituting ds in Eqs. (2.1a) and (2.10) by  —9¥__  anq 9%
51na CDSn

respectively, then letting the size of the element tend to zero.

¥
4? oo d Xy
.I Lis }_ p . '
P, ] dy 2 2
JW\(A
dx 2

Fig. 2.1 Equilibrivm of forces on an infinitesmal fluid element
These equations yield
P,=P, =P, 2.2)

This means that at any point in a static fluid continuum (i.e. no shear stresses) the
pressure is the same in all directions.
23— Pressure Variation in a Siatic Fluid

Let us consider the balance of forces on an infinitesimal fluid element in a gravia-
tional field, Assume that the element has an area dA and a height dz with dA normal
to the z direction as shown in Fig. {2.2a). The distance z is measured from an arhi-
~ trary datum plane in a direction opposite Lo gravity, The external forces acting on
the fluid element are illustrated in Fig. (2.2b) where P is the pressure on the bottom

surface, (P + %-2 dz) is the pressure on the top surface and W is the weight
of the element.
The net force in the z direction is
aP
PAA = (P + ; dz) dA - pg dA dz = O (2.3)
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Fig. 2.2 Balance of forces on an infinitesimal fiuid element in a gravitational field

Simplifying the previous equation yields

ar
o

S (2.4a)

B

¢

Similarily, the balances of forces in the x and v directions give

as
~

= 0 (2.4h)

o) o

"-r-‘:l_"tl ,‘4'

= (2.4c)

@

From Eq. (2.4) we conclude that the pressure is constant over a horizontal surface in
a static fluid and it varies in the # direction onlyv: therefore the total derivative
replaces the partial derivative in Eq. (2.4a), thus

o=~ g (2.5)
This is known as the hydrostatic equation for the pressure gradient at a point in a
fluid under the effect of gravitational field. This equation is a basic equation in fluid
statics,

KEnowing the values of p and g, the pressure distribution can be determined by
integrating Eq. (2.5). This can be done for special distributions of p and g as fol-
lows,



2-3-1— Pressure variation in an incompressible fluid in a constant gravitational
Field

z P
i

atm
t 4 ¢t

|

3

i

|
]
- —

|
n

=

-2

Lig. 2.3 Incompressible fluid in consiant gravitational field

[n this case both o and g are specified constants. Mow, integrating Eq. (2.5) from
any position z where the pressure is P to the fluid surface at position z where the
pressure is that of atmosphere P, (see Fig, 2.3), so that

1]

5 z

S (2.6)
; F z
1.E.

Pl By = bp iz - ) (2.7)
or

Pg = ogh (2.8)
where

h = {z, = z) is the elevation head, and
Pg = P — P_ is the gage pressure,

By definition,the gage pressure is the difference between the absolute pressure P and
the atmospheric pressure P.. It is important to know the physical meaning of the
gage pressure because it is used guite often in engineering work. A better picture of
this meaning ¢an be gained [ r{l}m Fig. (2.4}, It must be noted that

1. atmospheric pressure varies with weather and altitude

2. all absolute pressures are positive while gage pressures may be positive or
negative.
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Fig. 2.4 Absolute and gage pressures

Also, Eq. (2.5) can be integrated to give

P + pgz = F"{:| (2.9
where P is the pressure at z = 0. The value of P, is constanl throughout a static
fluid and it is equal to the sum of static pressure P and the pressure duc to potential
head pgz at any location. Equation (2.9 can be rearranged to the following form

2
E gl
= 5 e (2.10)

The termsy ﬁ_g and z are the static pressure head and the potential head respecti-

vely.

EXAMPLE 2-1

The gage pressure at a horizontal level in a river is 0.2 MN/m?. Determine the
gage and absolute pressures at a point 10m below this level. Consider that atmos-
pheric pressure and water density are 0,10 MN/m® and 1030 kg/m? respectively,

al



Problem Description

z
wel (]
ey — e e Py = D2MN/m?
- 0 m
. 4 1
SR o A e

Data of the Problem
* atmospheric pressure = 0.1 MN/m?2
* Water density = 1030 kg/m?
¥ Pg at level (1) = 0.2 MN/m?

Requirement

* The gage and absolute pressures at a point 10m below level (1)

Solution
From Eqg. (2.5), we have
B yi= peh, al level (1), (I
Py = peh, at level (2, (1)
Subtracting [ from II, gives
Py =Py +pethy = hy) (1)
Therefore

Py = 0.2 x 105 + 1030 x 9.8 %10
= 0.30094 x 10f N/m?
= 0.30094 MN/m?2 (TV)

To get the absolute pressure, Py, we know that

i Pg! + Paims v
hence
P, = 0.30094 (MN/m?) + 0.10 (MN/m?)
= (0.40094 MMN/m?2 (V1)




2—3-2— Pressure variation in a compressible fluid in a variable gravitational
field

Let us consider a compressible fluid like a perfect gas obeying the law P = pRT.
The hydrostatic equation, Eq. (2.5), applied to this field becomes

P = - 2B 4z .15
e ﬁ

ar

p=-& a2 (2.12)
where:

g is the gravitational acceleration,
R is the gas constant and
T is the temperature of the fluid.

Tointegrate Eq. (2.12), the relation between g, T and z needs to be specified. In the
atmosphere of the earth, the acceleration at any altitude is given by

2
T

where: g o= g, (2.13)

{ri+z)

r is the radius of the earth, r = 633dkm, and
g, 13 the gravitational aceeleration at the surface of the earth, g, = 59.8] m/se
Also the temperature (T) can be approximated as follows
T=T,-Kz (2.14)
where:

T, is the temperature at sea level and
K is constant known as the rate of temperature-lapse.

The rate of temperature-lapse is approximately equal to 6.6 » 10~ ? °C/m in the
first laver of the atmosphere. This layer is usually called troposphere and its height
is about 11km. Above the troposphere, there is a second laver that is more or less
conslant in temperature. This isothermal layer is called the stratosphere and has a
temperature around —36°C. lts height is in the neighborhooed of 9km bevond the
troposphere. By substituting from Egs. (2.13) and (2.14) into Eq. (2.12) we get

dp gDrz dz

= ; 2.15
i N ()t (T -k2) !

Integrating the above equation from the value P, at the point z = 0, sea level, to the
value P at the point z, above sea level, we find
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IF | gc‘r OIz az
Fo £ n (r+z}£,|fTO-kz'_:|
2
3 52 z
o B g 4l v ¥ kdz
0 [kr+TG}".I{TD-k-’-j O (r+2)(kr+T }
z 4z
ik T 2.16a
0 (kr+T ) (r+2) (2.16a)
T {r+z) z(kr+T ]
. T k L6b
1'3'. in ‘p";' I _iﬂ . ('kr_*'T_} L —T—T —}».ET 'k_'_E?T {2 ]'

However, if the temperature T and the gravitational acceleration g are taken Lo be
constant-which is a reasonable approximation for most engineering works near the
surface of the earth-Eq. (2.12) can be integrated between the same previous hmits to
give
B = - B2 (2.17)
P 5 R &

P
Using the gas law P = pRT toreplace RT.::- By Eq. (2.17) becomes
o

[s]
gp
Wi %_ Lo _F_o % (2.18)
o o
therefore
P = Po exp {- g[puf'Pu} Z} (2.19)

At sea level with T = 20 °C, the values of g, P, and p , are 9.8 m/sE, 101 % 107 and
1.2kg/m? respectively. Therefore Eq. (2.19) becomes

P =P, exp(—0.116 x 10 2)

EXAMPLE 2-2

If the rate of temperature-lapse in the troposphere is 6.6 °C per kilometre and the
pressure is a function of the density according to the relation Pp~" = constant,
i.e. polytropic process, Determine the index n and express the pressure, density and
temperature as tunctions of altitude and data at sea level,
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Data of the Problem
* temperature-lapse rate (K) = 6.6 *C/km
* relation between the pressure and the density is considered Pp~" ='constant

Requirements
* The index n
¥ the pressure, density and temperature as functions of alticude

Solution
As piven in the data of the problem the relation between pressure and density
takes the form

Pp~" = constant (n

where n is the polytropic expansion exponent. Then the density can be given by

1
o LR a

where b is a constant.
Substituting from Eq. (I} into Eq. (2.5), hence

1 1
ap _

et 0 s W bg ph ()

Integrate Eq. (I}, from sea level dendted by subscript 0, to any other level, then
rearrange using the equation of gas state to get

n=1
P n-1j
e AR - 4%
e nRT, (Iv¥)
where R is the gas constant of air (R = 287 I/ kg. K).From the polytropic relations
and Eq. (IV), “the density and temperature variations with the altitude are given by

1
n-1
E_El:{l_%%;—” z 3 (V)
- (n-1
T = & 2z
To " "aE (VD)
=T =% 2
o



where
- En=173 _ x ‘e
k E_HT = rate of temperature-lapse (VD)

Substituting from the data of the prablem inte Eqg. (VII) instead of the temperature-
lapse rate gives

n=1.24 (VII)
Substituting from Eq. (VI inte Eqs. (IV), (V) and (V) by considering sea level
conditions (T, = 293K}, yields

T = 293 - 6.6 =

L = f iE 505 e WY ¢ 3§
(]

;"—=£1~2,253xm z 1}
]

2 —4 — Measurement of Pressure

Most of pressure measuring techniques are based on the simple concept of balan-
cing the unknown pressure against a pressure due 1o gither the gavitational field or a
mechanical system. In the first case where the unknown pressure is balanced by the
weight of a column of liguid in static equilibrium, the device used is called mano-
meter. In the second case, a mechanical system is used to balance the pressure
against a mechanical pressure. Such a device is widely known as pressure gage. Both
manometers and ane type of the pressure gages, Bourdon gage, are discussed below.

2 —4—1— Manometers

The simplest type of manometers is the open tube manometer shown in Fig, (2.5).
[t consists of a U-shaped tube containing a liguid which may be mercury, water,
alcohol or any other liquid. One side of the tube is open to the atmaosphere, while the
other side is connected to the fluid whose pressure is being measured. The pressure
at the bottom of the U-tube is of course the same, but on the left hand side of the
tube it is given by

P+orghy +ppeh {(2.200
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While on the right hand side of the tube is given by
Py +Pnethy + hy) (2.21)

where ppand p are the densities of the fluid whose pressure is being measured and
the manometer liquid respectively, so that

N nnnrmnnte

by

Fig. 2.5 Open tube manometer
P+ peghe+ ppeh, =P, +p, 2th, + hy) [(2.22)

Therefore, the gage pressure is given as follows

P,=P~P, =g(pnhy, — pphy (2.23)

For gases, densities are very small relative to manometer liquid density, hence may
be stated that

Py =Ppehy, (2.24)

Another U-shaped tube configuration is shown in Fig. (2.6). Considering Fig.
(2.6a), the pressure P oat any point in the field is given by the following relation

P =P, +gch + pyhy) (2.25)



The second term on the right hand side of the above equation is the gage pressure
PE:’ 1.2,

P, = g(ohy + P hy) (2.26)

Figure (2.6b) also gives the gage pressure Fg as

Ps =E {p!' hi' ~ P hm:' (2.27)

(@) ®)
Fig. 2.6 Another configuration of open tube manometer

In some cases, the fluid of the conduit for which the pressure is to be measured is
also used as a manometer liguid and that usually occurs at moderate pressures. A
good arrangement for this case is to usc a vertical tube tapped to the conduit sur-
face. This arrangement is called “piezometer”, (Fig., 2.7). In this case the gage
pressure is

P, = prah (2.28)

Another arrangement for the U-shaped tube manometer is the well-type shown in
Fig. (2.8). The tube of the manometer is connected Lo an open reservoir having cross
sectional area A,; that is substantialy greater than the area of the tube A, The zero
reading of the manometer is usually taken at the level of the manometer fluid with
atmospheric pressure on both sides of the manometer fluid. When applying pressure
to the manometer, new settings of the manometer liquid surfaces will be establised
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in both the tube and in the reservoir, In Fiz. (2.8) the distance between the surface of
the manometer liquid in the tube and that in the reservoir is denoted by h | and that

between the surface of the manometer liguid in the tube and the zero reading is
denoted by h. The relation between h and b, is given by

P

Fig. 2.7 Piezometer

ha; = (h, — 1A, (2.29)
Substituting by the value of h, from Eq. (2.29) into Eq. (2.24) we get
I
PR (1% (2.30)

:-"‘ Pressure (1)

As
- —zeroreading

TN T

11 s

Tttt

Fig 2.8 Well-type manometer
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Comparison of Egs. (2.30) and (2.24) suggests that referring the manometer rea-
ding to the zero reading (i.e. using h instead of h,, in Eq. 2.24) would only be an
approximation. The accuracy of this approximation depends on the value of Ay A,

The term (1 + A /A;) is known as the correction factor and is usually taken into
consideration when marking the scale of the manometer so that the correct reading
can be taken directly from the manometer scale,

When the U-shaped manometer is used to measure the pressure difference bet-
ween two different level locations, see Fig. (2.9, the manometer is known as diffe-
rential manometer. To calculate the pressure difference, one follows the tube, star-
ting from one location to the other, keeping in mind that the pressures are equal
over horizontal planes within continuous columns of the same fluid.

Fig. 2.9 Differential manomerer

Iftog , g, and o, are the densities of fluids in the left hand side location, the mano-
meler and the right hand side location respectively, the values of pressure at points 2
and 3-being equal-can be expressed as follows

Py =Py =P, +fpgh {2.31)
While the pressure at point 4 can be expressed as

Py=P;—pyehy {2.32)

substituting P, from Eq. (2.31) gives
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Py=P +ppgh, —p 2ghy {2.33)
Sirmilarly, the pressure at point 3 is

P;=Py— 0 ghs (2.34)
Replacing the value of P, from Eg. (2.33) yields

P —-Pg=glp,hy + 0 hs —0p by (2.35)

This result can be derived directly using a simple rule by following the tube of the
manometer from one side of the manometer assembly to the other through steps.
Each step manipulates one fluid at a time where the pressure difference can be cal-
culated easily. Applying this to Fig. (2.9) it would be found that

Pp=Bs=(P, — Py} +(P; — P} +(P; = Py
= (—np ghy) + (prghy + (e ghs)
= glomhy + o, hs =0y hp) (2.36)
i.e., the same conclusion as Eq. (2.35). This rule is general and can be applied to any
manometer assembly, see EXAMPLE 2-4. If o and @ pare negligible with respect
to 2., & good approximation of the above equation provides

Pp=Ps=opeh=ppeh, (2.37)

The differential manometer can be used to measure accurately small pressure dif-
ferences by using two immiscible liquids of slightly different densities in the U-tube
of the manometer.

2=4-2— Bourdon page

Bourdon gage, Fig, (2.10), is the most widely used type of industrial pressure
gages, The pressure to be measured is applied to the inside of a phosphor bronze
tube of flattened elliptical cross section. The tube is bent into an arc or coil. One end
of the tube is held rigidly while the other is free to move inward or outward. The
movement of the free end rotates a pointer through a linkage and gear arrangement.
The applied pressure tends to change curvature of the coil. In doing this, the qua-
drant gear rotates the central pinion which in turn rotates the artached pointer. The
movement of the free end depends upon the difference in the inside pressure and the
outside pressure, the latter being the atmospheric pressure. Thus the pointer rota-
tion, representing the gage pressure, is read on a scale, This scale normally reads
zero when the gage is open to atmosphere. The scale is calibrated to read the gage
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pressure directly. Many of bourdon gages are calibrated to read pressure both above
and below atmospheric pressure, the latter 13 usually known as vacuum.

EXAMPLE 2-3

Pressure

Fig, 2,10 Bourdon gauge

In Fig, (2.6a), the manometer liquid and the fluid are mercury and water respee-
tively, If h,, = 30cm and the height h from the top of the mercury to the centre of
the fluid pipe is 45cm. Calculate the gage pressure at the pipe centreline in Newton
per meter square, centimeters of mercury and melers of water

Problem Description

|
|
h

|
|
i SR

hy

, S




Data of the Problem

* the manometer liguid is mercury

* the fluid is water

*hy, = 30 cm

*h = 45cm (the height from the top of the mercury to pipe centre).

Requirement

* the gage pressure at the pipe centreline in N/mZ, cms of mercury (Hg) and cms
of water (w).

Solution

Using Eq. (2.27), the gage pressure becomes

P, = (ghy + py By, )
hy=h—h, =045 - 0.30 = 0.15 (II)
Substituting from Egq. (11} into Eq. (1), yields

P, = 9.8 (1000 x 0.15 + 13600 x 0.3)

= 41.454 = 107 NSm? (1L}

The gage pressure l-“g is also equal to pp g hy where f refers to any fluid, thus

h, = 41.454 x 10 e

g 13.6 % 10° x 9.8

= 31.103 cm mercury

41.454 = 10°
10° x 9.8

= 4,25 meters of water

EXAMPLE 2—4
An inclined manometer is connected to a reservoir containing water and gas
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having the dimensions shown in problem description. Caleulate the pressure of the
gas above the water in the following units:

a) MIN/m?, b) bars, ¢) atms, d) em of mercury, ¢) meters of water. Take atmos-
pheric pressure equal to 0,1013 MN/m2.

Problem Description

water

Data of the Problem
* see problem description

Requirements
# calculate the pressure of the gas in the following units:
a) MN/mZ, b) bars, ¢ atms, d) cm of mercury, e) meters of water

Solution
a) Integrating Eq. (2.5) between any two levels 1 and 2 gives
P =Py =pelz — 29 (0

The pressure difference between points “a’ and e’ is given as follows
P, -P,=(P, — P;} + (P, — P3}) + (P; = Py

Using Eq. (1), the pressure difference can be estimated as follows
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Py = Py = - (1000 x 8.8 x 4) - (1000 x 9.8 x &y «
+ (13600 x 9.8 = -3-
= 0.058831 » 1o° N/me (11}

But P, = 0.1013 x 10% N/m2, therefore
Py = 0.05831 x 10° + 0.1013 x 105 = 0.15961 x 105 N/m?
= 0.15961 MN/m? (I}

b} Value of P, in bars, where bar = 0.1 MN/m?

0.15861

Py = 1.3961 bar

c) Value of P, in atms, where atm = 0.101325 MN/m2

= 0.15961 2 3
Pl = m“m—m = 1.57523 atm

d) Value of P in ¢m of mercury
Refering to EXAMPLE (2 - 3),

: fi
0.15961 :-cSl'D x 100 = 119,755 CM MErcury

153.6 = 107 = 5.8

g} Value of P in meters of water
Refering to EXAMPLE (2.3),

i}
0.15961 ik
Pl - A EL TP I 16,287 meter of water
107 « 9.8

2—5— Forces due to Hydrostatic Pressure

In many engineering problems, the need arises that the resultant force due to
hydrastatic pressure on a surface be calculated, and as well its line or point of action
be identified. The surface under pressure may be curved or flat, Also, the pressure
in the fluid field may be constant or variable. In the following analysis the general
case will be considered first, then examples of its application under specified condi-
tions will follow,

The total force “*F'" due to hydrostatic pressure, acting on a general surface
submerged in a static fluid as shown in Fig. (2.11), may be estimated by evaluating
its components Fo Fs' and F,. The following analysis is carried out for one compo-
nent, but the other two components can be found by analogy.

On an infinitesimal area dA whose normal unit vector n is at an angle § with the
x-axis, the x-component of pressure forces is
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(H,. H,, I1,)

Fig. 2.1l General surface submerged in a static fluid

de = dF cosa = P dA cos g (2.38)

The term dA cos 8 is the projection of the infinitesimal area onto y-z plane and is
denoted hereafter by dA,; so that

dF, = PdA, {2.39)
Therefore
F, = /P dA, (2.40)

“The moments of the x-component of the pressure forces about the y and z axes,
M, . and M, , respectively, can be caleulated as follows

dM, . =dF,.z (2.41)
dM, = dF,.y (2.42)
Substituting by Eq. (2.40) into Eqs. (2.41) and (2.42), gives

dM, , = P.dA, .z (2.43)
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dM, . = P.dA .y (2.44)

Integrating Eqs. (2.43) and (2.44) yields the following

M

[P.z.dA, (2.45)

¥k

M JP.y.dA, (2.46)

%

The line of action of the resultant pressure force in x-direction intersects the y-z
plane at a point with coordinates (H g H,), where

_ M {2.47)
A, = o—m2X
¥ >
. M,
fi, = L2 (2.48)
g

Substitution from Eqs. (2.40), (2.45) and (2.46) into Egs. (2.47) and (2.48) yields

" [P.y.dA -
j-l‘f = -':qud-T I (2. 9}
= [Pz . dA 2.50
Rz = prraa_ 20

Mote that the coordinates T—IY and ﬁz represent the projection of the centre of pres-
sure onto v-z plane.

The other two components of the resultant pressure force can be evaluated in the
same manner along with the centre of pressure.

Attention needs to be drawn here to the fact that irrespective of the curvature of
the surface, the net component of pressure forces in any direction can be found by
projecting the surface on a plane perpendicular to this specified diréction, and cal-
culating the pressure forces acting on the projected area. Also, the coordinates of
the centre of pressure can be identified by finding the coordinates of the centre of
pressure on the prajected area.

Now we will consider the application of the above principles in the following
cases.

2~45—1— Application to a constant pressure field

If P is constant throughout the fluid field, Eg. (2.40) gives
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Ay (2.51)

where A, is the projection of the surface area onto v-z plane. Also, from Egs.
(2.45), (2.46), (2,49) and (2.50) we have

H}",x =P llll‘.."?!..l'.l.-"-x {2_52}
MZ,:( = p ; .-':.',::Ll‘\x {2.53)
' Py dA
; SURRL L N (2.54)
' :'I.\,
Iz dﬂ:’:
= A -
Hoy = (2.55)
Ty

Analysing other components of forces in the same manner, it will be found that:
il the pressure acting on an area is constant all over this area then the centre of
pressure coincides with the centre of area’.

2—5-12— Application to a variable pressure field

An example of this is when the pressure is a linear function af the vertical coor-
dinate “*z**, i.e.

P = gz (2.56)
where 0 is the density of the fluid and g is Lhe gavitational acceleration, both consi-

dered constants. Substituting for P from Eq. (2. 30} into Eq. (2.40) vields

x ﬂ’ Pz A

pE Sz dA (2.57)
’ A %

but (2 dA, is the first moment of the projected area A, about ¥ axis and can be
defined as fnllowe

X

9 da, = A = (2.58)
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where z is the z-coordinate of the centre of area. Therefore, the resultant force
component in the x-direction can be evaluated by the formula

Fe = oR A2 (2.59)
If the same procedure is followed with M, , and M, it will be found that
M = og  ozt.dA, = g I
}I |X _r"“ ~ x g :r':r',x {2.60:}
."‘Iz'x = (e} ﬁ'.r Yz.dﬂx = PE I:r'_zlx {2.61]

Where {,'_.F « 15 the moment of inertia of the projected area A, with respect to the y
axis and I}.._: . 15 the product of inertia of the same area with respect to the y and =
AXes,

The coordinates of the line of action of the resultant pressure force in the
w-direction are given by

M, I

H = Z X = 2,5 2.62
A, = = YEX (2.62)
X AL2
X
. M I
Bo = == = s (2.63)
b Arz
%
But the values of L and I, . may be given as follows
Lys s = I_‘_r'z.x +y.2.A, (2.64)
Ly x = Ly * E_E‘Ax (2.63)

Where T:.fz,x is the product of inertia with respect to the centroidal axes yand z; l_j. ¥

is the moment of inertia with respect to the centroidal axis y. Substituting from Egs.
(2.64) and (2.65) into Eqs. (2.62) and (2.63), we get

i
T g i < (2.66)
_ _ I
Ap =2 & L% (2.67)
;':".}'cz
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It 15 worth mentioning here that the resultant pressure force in the z-direction
evaluated by the above procedure is given by

Fz = pg 1z di (2.68)
which is equal to the weight of the vertical cylindrical body of liquid with area A as

base and the free surface of the liquid as top.

Special case

Consider the hydrostatic forces on a flat plate submerged in a static incompres-
sible fluid. For simplicity the coordinates svstem can be selected in such a way that
the submerged surface is perpendicular to the y-plane as shown in Fig. (2.12).

The hydrostatic force on the flat plate can be calculated from Eq. (2.61) as fol-
lows

FK = pg.ﬁ.x.i = pg A sind , 3 (2.69)
Therefore,

Fx 7 {2.70

Bl ¥ weee 0

The coordinates of the centre of pressure can be defined using Eqgs. (2.66) and
(2.67).

Fig. 2,12 Flat plate submerged in a static incompressible {Tuid
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Another approach may be followed to solve this particular problem by assuming
" a£-5plane to bethatof the flat plate as shown in Fig. (2.13) inwhich casethe &-axis
coincides with the free surface, In the new coordinate system, the net hydrostatic
force on the plate and the coordinates of its centre of pressure can be determined
using equations similar to Egs. (2.69), (2.66) and (2.67) which give

F o= pgeahz (2.71)
B, =& =+ ]{‘.c
*E, A (2.72)
i1 c Tﬁﬁ
ol O R <
& Az (2.73)
where 7 is defined from Fig. (2.13) as follows
- 5 -
T (2.74)
EXAMPLE 2-5

A circular plate of diameter 20 em is immersed in water as shown in the problem
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description. Calculate the magnitude and location of the hydrostatic force acting on
one side of the plate.

Problem Descriplion

Data of the Problem
* gircular plate of diameterd = 20 cm = .2 m
*h=20cm = 0.2m
*ao= W0
* density of the water p = 1000 kes/m?

Requirement
* calculate F and H

Solution
z = 0.2 — 0.1 sin 30°
0.2 — 0.05
L15m {0

Taking the axes as shown in the problem deseription, and using Eqs. (2.71), (2.72)
and (2.73), give

F=pg A2 = 1000 %« 9,8 x (v =0.1) = 0.15
= 46.18.N ({m
Ha= E + --: s IT1
s AZ B
but £ = 0 and I~.=0 (due to symmetry), therefore

o
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FE =0 IV}

i i i
Ay = ¢ o &
: i
where
;o= ﬂi v B d om0 5 (V)
- 4 44 ¥
loem I = OGN . oss st ot (V1)
thus
e e
fy = 0.3+ A s 1 U T R (VII)
n(0.1)°x0.3
But A = -[E =in 30
.= 0.3083 » % = 0.15415 f (VIII)

EXAMPLE 2—06

Calculate the resultant hydrostatic force of water, acting on the wall AB shown in
the Problem Description with height 7.5m and width Sm.

Problem Description

,f_,
~3 N S 651‘; i
ﬁrﬁzﬁi} Gfg %



Data of the Problem
* AR is a vertical surface having:
height, h = 7.5 m and
width, W = 5.0m
* density of water 0 = 1000 kg/m?

Requirement
* calculate the resultant hydrostatic force I and its location

Solution

Taking the axes at the centre of the plane AR as shown and using Eqs. (2.74) and
(2.73), give

At 9] A
—=—— T |
T || 12
B I
|_ Z l
H,=H | 7
| _l_ BN (NI - s e T e
' c.g.
P &
c.p
B" - - E
| D 75pg E
F M ——
F= pg AZ = 1000 = 9.8 x (7.5 = 5] :-:1%.::’. (1)
= 1378125 I

From symmetry H, = O, but IL, is given by

| ER, " . *
R, =2 o+ 22 . LS, 2ol ik )
Az 12 % B = 7.5 x ?'5
g
7.5 7. 2 5
= ZJ + _11_5 ) ? [ F45)
s § @ (11T}



The wall is vertical, therefore

ﬁ!ﬁ}ﬂ;’i fit

The same results can be obtained by considering the distribution of the hydros-
tatic pressure on the wall. At any point of this distribution the pressure is given by
the relation P = ggh, Both © and g being constants, the relation between P and h
becomes a straight line, so that P is equal to zero at the free surface of the water and
equal top gh (1000 = 9.8 = 7.5) at the bottom of the wall, with a linear distribution
as shown in Fig. (I).

Thus the magnitude of the resultant force on the wall is equal to the area of the
trigngle CDE of Fig (1) multiplied by the width of the wall. Also the resultant foree
is in the same direction of the pressure distribution and acting at its centre of gra-
vity.

So that

Fou L:588 X7-5 4 5 o 1378125 N {1v)

which ig the same result as Eqg. (1)

It is obvious that the location of the resultant force, H, is given as follows
i Z Z

‘3-“?-5=:: m

and lies on the 2 axis due to symmetry, which is the same result as Eq. (I,

EXAMPLE 2-7

Calculate the resultant hyvdrostatic forces of water acting on 5m width of the wall
ABC shown in the Problem Description.

Problem Description
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Data of the Problem
* AB is a guarter of a circular eylinder of B = 5m
*h=7%5m
* density of water = 1000 kg/m?
* width of the surface w = 5m

Requirement
* caleulate the resultant hdyrostatic force F and its location.

Solution

]

S | ;. ﬁ.,x

DIMENSIONS IN METERS

In the present problem the resultant force on the wall ARC has two components;
in the x-and z-directions. The force per unit width in the z-direction 15 due 1o the
weight of water in the volume having base arcs ARCD and one meter width, The
force F, can be divided into two components: I, which is the weight of the paral-
lepiped BCDE with unit width and I, which is the weight of the quarter cylinder
ABE with unit width. The line of action of each of F,, and F 5 passes through the
centre of mass of their respective volumes (see Appendix A).

The value of F,; and F; are as follows
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F;; = (volume BCDE) x (weight of unit volume of the fluid, i.e. pg)
=(5»25x1)xpz

12.5 # pg N/m

122500 N/m Y

{volume ABE) x (pg)

1

Fu

T % 5

I{_T— x]jxpg-lg.fl x og
= 192080 N/m (1I)

Nim

The horizontal component F, can be calculated directly from the hydrostatic pres-
sure distribution as follows

E, = ‘Ci:ﬁg « 7.5)%= 1 = 28.125% og N/m
=5 2?5!525 N.-'r]'l'l {III}

and its location at a distance 2.5 m of A
The resultant force per one meter width, F, is given as follows

F=yF+ 2

V(28125 gl + (125 pg = 19.6 pgr

42.68 % pg N/m (IV)
= 418264 N/m

Total resultant force, ), i.e. resultant force for 5 meters width
QO =F x5 = 418264 =5

2091320 N

= 2.09 MN

and its direction & with respect to x-axis, is given by

Ly |

12,5 pg + 19.6 o2 . 3§ 1153
8T8 T

a2

tan & =

T
e 19

L .

8 = 48° 47
To define its location, consider the sum of moments about point Q. This is equiva-
lent to the moment of resultant force about the same point, thus

(1257 x (2.5 — 2.12) = (32.19) = ¢
e =10.148 m
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Also, we can solve the problem graphically by drawing the force and string polygons
as llustrated below

Il
{38
—_
P
LA

™
(]

Q = 8.5 x (5pg) x §
2.08 x 106 N = 2.08 MN
48.5°

i

Figure scale
lem = 1 meter

String Polygon

&l

Forces scale
lem=5xpg N/im

Force Polygon

EXAMPLE 2 -8

A tainter (radial) gate of & x 10°N weight, 4 meter radius and 10 m width is
pivoted at point @ as shown in the Problem Description. A balancing moment of
2.4 x 10° N.m counter-clockwise is required to bring the gate to static equilibrium
in the closing position. Find the reaction at the hinge and the line of action of the
weight of the gate.

Problem Description



Data of the problem
* radius of the gate = 4 m
* width of the gate = 10 m
* weizht of the gate = 8 % 10° N
* halancing moment, M = 2.4 = 105 N.m

Requirements
# regction at the hinge for static equilibrinm of the gate.
® the line of action of the weight of the gate for the same casc.

Solution
The forces acting on the gate, are as shown in the figure. The lines of action of

forces I, and IY,; are found by reference to Appendix A

H

ETaI
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The magnitude of forces Bois W and F, per one meter width of the gate are

Fxl 2, E“iﬂ x 41w L= - B xpg o=~ FHAD0 N/nm (1)
5
| = & * 10 - . g .
W R S = 8 10 NSm (1)
2
F?l = _[ﬂ = 4 R nE = 12,57 ,g
= 123186 HN/m (IIII_}

The foree equilibrium equation of the gate in x-direction gives ¥ F, = 0, that is
F,, = 78400 N/m (1)
Also, the force equilibrium in z direction LF, =0, that is
Fo. + 80000 — 123186 = O
L.
F,, = 43186 N/m (V)

The reaction at the hing per one meter width R can be calculated from Egs. {IV) and
(V) as Tollows

: T : - 7 TR
R = /F2 + B = J7s4003% + (43186)

89507.5 N/m (VI).

The total reaction Ry i.e. the reaction force for the 10m width becomes
R = B9507.5 = 10 = 825075 N (VI
and its direction £ with respect to x-axis is given as follows

: - z2 43186  _ ;
tang = ?“;‘E mﬁﬂ'h T 3.551
i.e.
5 = .z2p° 5T



The location of the line of action is determined by considering the sum of moments

acting on the gate about a paint such as 0. This summation equals zero at static equ-
librium, therefore

240 — B0 xe=10
e = 3m

EXAMPLE 2-9

The drutn gate shown in Fig. (1) has the dimensions given in the Prohlem Des-
cription with 20 meter width. The action line of the weight is located at 2.25m hori-

zontally from the hinge. Find the weight of the gate. Also find the hinge reaction at
the shown static equilibrium position,

A
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Data of the problem

*p=5m
*r1=3m
*hy =05m
* o= 40"

* Action line of the weight is at a distance 2.23 m horizontally from the hinge.

Eeguirements
* weight of the gate, W
* hinge reaction, (R,B)

Solution

This example can be solved either analytically or graphically. The analytical solu-
tion is left as an exercise Tor the reader and only the graphical solution is considersd
here.

As a first step, calculate the resultants of the hydrostatic pressure per-one meter
width in the x and z directions by using Appendix A.
1

Fer1 =3 % (3,714 og)= 3.714 = 6.9 og = 676200 N/m
To get the hydrostatic force F_; in z-direction on AB (i.e. the force due to the weight
of water in the volume having base area ABG and one meter width) consider the
composite system resulting of adding the triangle ADE and the rectangle AEBG and
subtracting the circular secltor DAB. This gives

F,; = L1B8pg = 1164.4 N/m

Also, F,, can be determined as follows

FEZ=[31a1-¢ o +2 T.214 Pg}*zdg:ﬂ:lﬂ_zz og

= 100156 H/m

Locations of these forces are as shown in the following figure.

The second step is getting the requirements by drawing force and string polygons as
shown in Fig, (1T}

From the polygon of the forces, the weight of the gate is
W o= (.8624 MN

Also, the magnitude of hinge réaction R becomes
R = 1.6268 MN

with direction 0 given as follows

g = 213° 43
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2—6 - Buovancy

A body floating freely in an incompressible fluid, whether completely or partially
immersed, is acted upon by two forces in static equilibrium. One is its weight and
the other is the resultant force exerted on its surface by the surrounding fluid. The
latter force is called the buovant force.

To evaluate the buoyant force on a body totally immersed and floating freely in a
fluid of density p, consider a vertical prism of cross-sectional area dA,, taken

BT

Py di,

4
Fig. 2.14 Submerged body
from within the bady as shown in Fig, (2.14). The pressure acting on the top of

the prism i3

e = = 2.75)
whereas, the pressure on the bottom of the prism is

by & ¥ 2 2.76)

The net vertically upward ferce (upthrust) acting on the prism is

dPE pg 2z = zl'_:l da, (2.7

dF, = og dv (2.78)
where dV is the elemental volume of the prism and subscript B denoles buoyancy.
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Integrating throughout the entire body, we get the following expression for the
buovant force

By =/ og dV = pg V (2.79)

This equation states that buoyant force on a floating completely submerged body in
an incompressible fluid is equal to the weight of fluid displaced by the body.

The centre of buoyancy, i.e. the point of action of Fp, is determined by taking the

moments about ¥ and x axes respectively. This vields

Fp - X = X pg dV (2.80a)

p.<
"

Yy eg dV (2.80b)

Substitution for Fy, from Eq.(2.79) gives

f
o o (2.81a)
B V
_ vf v dv
Y, = (2.81b)

It can be concluded from Eqgs. (2.81) that the buoyant force acts through the cen-
troid of the volume displaced by the body,

Equations (2.79) and (2.81) represent the principle of Archimedes (250.B.0C),
which states that: ““When a body is completely or partially immersed in a fluid, it
experiences an upthrust equal to the weight of the mass of that fluid displaced. This
upthrust acts vertically through the centre of gavity of the displaced fluid®’,

In case of a partially immersed body (see Fig. 2.15) the same analysis can be
applied to conclude that the total buoyant force is equal to the weights of both air

air

Iigquad

Fig. 2.15 Emergent body
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and liguid displaced by the body. Since the density of air is negligible compared to
that of the liquid, the buoyant foree can be considered equal to the weight of the
liquid displaced by the body and acts through the centroid of the displaced volume
of the liguid.

2 —7— Static Stability of Fleating Bodies

A floating body at rest is in static equilibrium under the two forces: body weight
and buoyant force. These two forces must be equal bul opposite and lie on the same
line through the centre of gravity of the body, as shown in Figs. (2.16a) and (2.17a).
The stability of the body is governed by the forces and moments produced as it is
disturbed from the position of static equilibrium. The floating body is said to he
stable if when it is subjected to a small disturbance, forces and moments will evolve
to restore the body to its original position.

If the centre of gravity of a floating body (€3) lies below its centre of buoyancy (B}
the body will be stable. Figure (2.16) shows that a couple will be produced to restore
the body ta its original position. But if the centre of gravity of the floating body lies
above its centre of buoyancy then either of two situations will evolve:

b

o b
Fig. 2.16 Stable equilibrium of a submerged body (G below B)

Fig. 2.17 Unstable equilibrium of a submerged body (( above B)
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a) immersed floating body which will be unstable as illustrated by Fig. (2.17).

b) emergent floating body which may be stable even though its gravity centre is
above its buoyancy centre, This will be explained in the following,

Consider & body partially immersed as shown in Fig. (2.18). If the body is sub-
jected to a small angular displacement 8 (tang = fin radians) about the axis y, then
the immersed part of the body is changed and the centre of huoyancy becomes B
instead of B. To find B, take the moment of the new buoyant force about B. The
new buoyant f‘nrec Fg, on the tipped configuration is equal to the original buoyant
force Fy at B, pius the buovant force of the wedge YEE minus the buoyant force of
the wedge YAA. Since the original bouyant force, Fy, has zero moment about its
centre and since both the buoyant forces of the wedge OEE and the wedge OAA
make a couple. Then the balance of moment gives.

FE? « b = &‘f ® o, dFB,l'-' (2.82)
where dFB w 15 the buoyant force of the infinitesimal volume (x.8.dA) of the wedges
yEE and yAA It is obvious that the term n-‘r X t.iF\g_ll w represents the couple of the
wedges. Substituting for Fy and dFB w by (peV) and (oz x 8dA) respectively, gives

V.b = 8 7 x" da (2.83)
A
8.1
ar ﬂ - i
v (2.84 )

where

0 is the density of the liquid,

V  is the volume of the liquid displaced by the bady,

dA  is an infinitesimal area of the plane A E,

Ly s the second moment of the plane A E about the y axis (I = , /x2 dA). The
second moment of area of the plane AE can be used as I for small angular
displacement.

¥y

By evaluating b the line of action of the new buoyant force Fg can be
found. This line intersects the geometric centerline BG of the cross sex:tmn at
M. The point M is termed the metacentre and the distance between gravity
centre and metacentre, GM, is termed the metacentric height. Clearly, the
condition governing the stability of partially immersed floating bodies, in
which the centre of gavity is above the buoyancy centre, depends on the' posi-
tion of the metacentre relative to the gravity centre. The body will be stable if
its metacentre is above its gravity centre, neutral if they coincide and will be
unstable if M is below G.

The metacentric height is of pgreat importance to naval architects in
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Fig. 2.18 Stability of an emergent body

the design of ships. The degree of stability of the vessel increases with the
increase of metacentric height, but on the other hand the period of roll also
depends on the metacentric height. A too large value of metacentric height
tends to result in undesirably rapid rolling, particularly in rough seas. Com-
mercial vessels, particularly liners, are generally designed to have a relatively
small metacentric height of the range 0.3 to 0.6 metres Tor rolling displace-
ment about a longitudinal axis, whercas, the corresponding value for warships
is between 0.6 o 2.0 meters, thus giving them a greater reserve of stability.

EXAMPLE 2-10

A barge of an ellipsoide cross-sectional area at the waterline as shown in the
figure, where b and d are 45m and 15m respectively, weighs 2800 tons. It floats in
salt water of density 1026 kg/m?, The centre of gravity and the centre of buoyancy
are 0.65m and 1.5m above and below the free surface respectively. Define the
metacentric height about the longitudinal axis =<-x.

SR



Problemn Description

Darta of the Problem
* ellipsoide cross section of dimensions
b = 45m 011 X-axis
d = 15m on y-axis
* weight of the barge, W = 2800 tons
* density of the salt water, p = 1026 kg/m?
* 0G = 0.65m above the free surface
*0B = 1.5 m below the free surface

Requirement
* define the metacentric height about the lengitudinal axis x-x
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Solution
From problem description we find that

8 = BM - CE
~ B ~ a'lxx o I
T sin 8 tE = Voeing =~ °F D

Since sing = & in radians for small angular rotation. Then, by substituting into Eq.
(I} we zet

1
t - 4 - B (IT)

Using Appendix B we obtain 1 as

) 301 3
Iy g5 " b d =z ¢ (45) (18)°
= 7455.12 m (III)

Using the buovancy law namely
ag Vo= W (Iv)

we get
1026 % 9.8 x V = 2800 x 9.964 »x 10

i.e.
YV = 2774.7 m? V)

Using the data of the problem GB becomes
GB =0G + OB = 0.65 + 1.5 =215 (VI)

By substituting from Eqgs. (I}, (V) and (V1) into (1), we get

oM = %% - 2,15 = 0.537 m

PROBLEMS ON CHAPTER TWO

Problems on Sections 2-1 to 2-3

2.1. What will be (a) the gage pressure, (b) the absolute pressure of water at a
depth of 15m below the free surface. Assume the density of water to be 1000 kg/m?
and the atmospheric pressure 101 kN/m?.

2.2, A diver descends from the surface of the sea to a depth of 35m. What would
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be the pressure under which the diver would be working, assuming that the density
of sea water is 1025 kg m™3 and remains constant?

2.3, Determine the pressure in Pa at (a) a depth of 7m below the free surace of a
body of water and (b) at a depth of 10m below the free surface of a body of oil of

specific gravity 0.75.

2.4, What depth of oil, specific gravity = 0.83, will produce a pressure of
140 kN/m2, What would be the corresponding depth of water,

2.5, What is the pressure in kN/m? absolute and gage at a point 4m below the free
surface of a liguid having specific gravity of 1.53 if the atmospheric pressure is
equivalent to 755mm of mercury. Consider the specific gravity of mercury as 13.6
and the density of water as 1000 kg/m?,

2.6, Determine the depth of a tube filled with mercury (s = 13.68) if the gape
pressure at the boltom is 230 kN/m2,

2.7. What is the gage pressure and the absolute pressure of the gas in Fig. (2,19} if
the barometric pressure is 770mm of mercury and the liquid is (a) water of density
1005 kg/m?, (b) oil of specific weight 8000 N/m?.

2

Fig. 2.19

2.8. An open tank contains oil of specific gravity 0.8 on top of water. I the depth
of oil is 2.5m and the depth of water 4m, calculate the gage and absolute pressures at
the bottom of the tank when the atmospheric pressure is 1 bar.

2.9, A hydraulic press has a diameter ratio between the two pistons of 9 to 1. The
diameter of the larger piston is 65cm and it is required to supporl a mass of 4300kg.
The press is filled with a hydraulic fluid of specific gravity 0.85. Calculate the force
required on the smaller piston to provide the required force (a) when the two pistons
are at same level, (b) when the smaller piston is 2.8m below the larger piston,
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2.10. If the pressure gage shown in Fig. {2.20) indicates a pressure of 0.5 x 10% Pa,
what are the pressure at points A, B, and C.

_ )
il (S = 0.92) im

i L oi !
=y (5 =.78) | Water 7m

: 2 m# v

TR Water

’ ! I @ | A 2

Sbar d

Fig, 2.20

2.11. A concrete dam is constructed as shown in Fig. (2.21). When the water level
on the left is 13m, determine the pressure at the bottom and sketch the pressure dis-
tribution on the dam wall,

| ¥ &

¥ it
W
Fig. 2.21

2.12. Derive an expression for the pressure distribution in atmosphere from sea
level to 20km by considering mean values for gravitation acceleration 9.79m/s?,
9,750 mss? for the troposphere and the stratosphere respectively. Sketch the pres-
sure versus the altitude.

2.13. Assume that the temperature of the atmosphere diminishes with increasing
altitude at the rate of 6.5°C per 1000m, find the pressure and density at a height of
Gk if the corresponding values at sea level are 101 kN/ m? and 1.235 kg/m? when
the temperature is 157,

2.14. At an altitude z, of 11km, the aimospheric temperature T is — 56.6%C and
the pressure p, is 22.4 kN/m2. Assuming that the temperature remains the same at
higher altitudes, calculate the density of the air at an altitude of 16.5km. Assume R
= 287 J/ke K.
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2.15. Calculate the pressure, temperature and density of the atmsphere at an alti-
wde of 1500m if at zero altitude the temperature is 13°C and the pressure
101 kN/m?2, Consider ¥ = 1.4, and R = 287 I/kg.K.

2.16. The pressure and the temperature at sea level are 101.32kPa and 20°C. If
the troposphere is 11.5km high, find the atmospheric pressure, temperature, and
density at 16km altitude.

2.17. Assuming that atmospheric temperature decreases with increasing altitude
at a uniform rate of 0.006 K/m, determine the atmospheric pressure at an altitude of
8000 m if the temperature and pressure at sea level are 13°C and 10 N/cm? respecti-
vely.,

2.18. At the top of a mountain the temperature is —5°C and a mercury baro-
meter reads $6.6cm, whereas the reading at the foot of the mountain is 74.9cm,
Assuming that R of atmospheric air is equal to 287 J/kg K and that temperature
relates with pressure in the from PT1/ (=) = constant, whereY = 1.4, Find the
height of the mountain assuming thal gravitational acceleration is constant,

Problems on Section 2-4

2.19. Find the pressure in N/m? at point A for each case of Fig. (2.22). All
dimensions in cms

g

v -

g e . . i e

‘)
il |
Tm s-ogsef |
i Water E )
| 30
il A. ¥ _L
hercury
Fig, 2.22
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2.20. Determine the difference in pressure between points A and B in separate
mpes connected to a differential manomeler as shown in Fig. (2.23). The basic
manometer fluid is mercury. All dimensions in cms.

Be

Water

Fig. 2.23

2.21. What is the difference in water pressure between points A and B in Fig,
{2.24) if the fiuid at the top of the manometer is (a) oil (s = 0.93), (b) air.

Im
[ 1 m
Ay ‘*
Water
1.1 m
Watcr j_ dg/
Fig. 2.24

2.22. In Fig. (2.23), if the water pressure at point B is 178.5kPa, what is the water
pressure at point A7 (All dimensions are in cms),

Interface

| . Qilsp, gr. = (.92

B T Y

Water

Water
%‘_
.

Fig. 2.25
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2.23. In Fig_ (2.26), if a = 5m, to what height will the oil rise in the oil column b?

F
lrn;r Air b
Oil a
2 sp. gr. .
& 1.5m;
1 =090 =y |
7
mI._ Water ——am
4
Fig. 2,26

2.24. Compute the atmospheric pressure on a day when the height of the mercury
barometer iz 743mm.

2.25. What would be the pressure in kN/m? if the equivalent head is measured as
30em of (a) mercury of specific gravity 13.6, (b) water, (¢) oil of specific weight 7.9
kN/m?, (d) a liquid of density 640 kg/m3.

2.26. A pump is a device that puts energy into a liquid in the form of pressure.
The inlet side of a pump usually operates at less than atmospheric pressure as shown
in Fig, (2.27). A manometer and a vacuum gauge are connected to the inlet side and
the-vacuum gauge reads the equivalent of 32.4 kPa absolute.

a) Express the gauge reading in kPa gage.
b) Caleulate the deflection when the manometer liquid is mercury,

Outlet

Fig. 2.27

2.27. Caleulate the air pressure in the tank shown in Fig. (2.28). Take atmos-
pheric pressure to be 101.25 kPa.

a5



Open to
atmosphere

AT TeeTT

Water

Fig. 2.28

2.28. For the sketch of Fig, (2.29), determine the pressure of the linseed oil if the
glycerine pressure is 105N/m2. All dimensions are in meters, '

Castoroil, 5 = 0,96

Linsced oil
Glyeerine =003

5= 1.263

Heg H,0
Fig. 2.29
2,29, For the W-tube water filled manometer configuration and the readings as

shown in Fig. (2.30), calculate the absolute pressures at A and B, Take the atmos-
pheric pressure 101.12 kN/m?, All dimensions are in cms.

Fig, 2.30



2.30. Two U-tube manometers, one upright and the other inverted type, are con-
nected across a water line and an oil line as shown in Fig. (2.31). If hy = 6.4cm,
what shallbe hy ?

T T T

Fig. 2.31

2.31. A differential manometer is used to measure the pressure rise across & waler
pump. The liquid in the manometer is mercury with 13.6 specific gravity. The
observed manometer deflection is 75cm and the manometer leads are connected to
the pump as shown in Fig. (2.32),What is the pressure rise P; — P, in Pa.

T5cm

Manometer

Fig. 2.32
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2,32, Flasks (1) and (2) are connected through a differential manometer as shown
in Fig. (2.33). What is the pressure difference between A and B if Fluid 1 is oil with
specific gravity 0.86, Fluid 2 is mercury, and Fluid 3 is water,

Fig. 2.33

2.33. What is the gauge pressure al point A for the system shown in Fig. (2.34), All
dimensions are in cms.

1= Fluid 1, Air

Fluid3 H,O"

40
: E: |
"
Fluid 4
Fluid2 He
Hg
Fig. 2.34
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2.34. Determine the difference in pressure between the points A and B for flow in
the vertical pipe of Fig. (2.35).

sp.gr. = 0L827
(_‘O =
10m
=l
B
spogr. = 1401
Al
Fig 2.35

2,35, An inclined manometer is used to measure the difference in air pressureina

pipe between two points as shown in Fig, (2.36). Find the difference in pressure for
the given conditions. All dimensions are in cms.

He



2.36. The sensitive differential manometer shown in Fig, (2.37) has two liquids of
density py and p,. Find an expression for the pressure difference P, — Pp in terms
of I:J], i:"z, Ly dl" and dl‘

d, iy
— = e -
lPA an
At | B I'l
s, o
._._.._.____——ﬁ_h — e ——

e
|

Fig. 2.37

Problems on Section 2-5

2.37. A pate ABC, 4m wide holds a 2m high stationary column of water as shown
in Fig. (2.38). Calculate the tension in the string SA and the reaction at the hinge C.

String

Fig. 2.38
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2.38. A 1.5m diameter gate AB closes the side of a water tank as shown in Fig.
(2.39). Determine the magnitude and location of force F to hold the gate without
causing a reaction at the hinge at A.

ot T M |
o A g i o et e S B L5m
A X

E!

ol

=St ™

0.5m #

o e e,

Fig. 2.39

2.39, Determine the height of liquid of specific gravity (L3, o tip the rectangular
flash board shown in Fig. (2.40).

Flash Board

. Hinge
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2.40. A Im x 2mcover ABonacontainer under a pressure asshown in Fig.(2.41) is
held in position by a force F. Calculate the force and the reaction at the hinge B.

B0 k N/m?

Fig. 2.41

2.41. As water rises on the left side of the rectangular gate in Fig. (2.42) it will
open automatically, Al what depth above the hinge will this occur? Ignore the

weight of the gate,

T
Fig. 2.42

2.42. A plate of weight 280 N per unit width is suspended at one end by a hinge at
the water level of the reservoir as shown in Fig. (2.43). The bottom end is free to
mave. Caleulate the angle of repose, 8, of the plate.




2.43. Calculate the magnitude, direction and location of the horizontal and ver-

tical componenets of the force experienced by each of the curved surfaces AB
enclosing water as shown in Fig. (2.44).

Fig. 2.44

TITTTTTTT
T

A (0.1m, 1m)

xy = Constant

2.44, A vertical sluice gate is 3.5m x 10m submerged in water and has 1m opening
as in Fig. (2.45). From the pressure measurements reproduced below, calculate the

horizontal force on the sluice gate

z 0 I 2 2.25

2.5

3.25

315 m

F 098 19 21

13

0 kN/m?

Fig. 2.45
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2.45. Refering to Fig. (2.46), calculate the total force acting on one side of the
plate ABDC, due to water at rest.

u
C bottom
view

D
Fig. 2.46

2.46. The gate shown in Fig. (2.47) is Sm wide perpendicular to the paper. Calcu-
late the total force on the pate due to oil of (.88 specific gravity.

Fig. 2,47

2.47. A rectangular water gate as shown in Fig. (2.48) is 4m wide (perpendicular
to the paper). What is the torque about hinge 0 due to the hydrostatic force.

P

Fig 2 48
T4



2.48. Calculate the hydrostatic force acting on the vertical wall AB as shown in
Fig. (2.49). Also determine the point of action of this force,

-

AR AR

T

[v]

Fig. 2.49

2.49. Caleulate the force per unit width on the wall OA of Fig. (2.50).

Compressed air & 150 k P, gage

Fig. 2.50
2,50, A verlical water gate 2.4m tall and 1.2m wide is exposed to the atmosphere
on one side. Its other side is in contact with water at rest to a dept of 1.9m; the
remaining 0.5m of its height is above the water surface, and is exposed to the
atmosphere. Find the force required to hold the gate up.

2.51. Calculate the minimum vertical force F required to keep' the cover of this
box, Fig. (2.51), closed. The cover is 3m wide perpendicular tothe plane of the

paper.

Hinge

Fig. 2.51



2.52. Calculate magnitude and location of the total force on one side of this ver-
tical plane areca, Fig. (2.52).

Fig. 2.52

2.53. What depth of water will cause this rectangular gate to fall? Neglect the
weight of the gate.

Fig. 2.53

2.54. Calculate magnitude and location of the total force on one side of this ver-
tical plane area.

1.2 m ':

= Fig. 2.54



2.55. Caleulate the resultant hydrostatic force of water acting on 10m width of
the wall ABCD shown in Fig, (2.55).

Fig. 2.55

2.56. Caleulate the resultant hydrostatic force of water acting on 5m width of the
wall ABC shown in Fig. (2.56),




2.57. Calculate the resultant hydrostatic force of water acting on 10m width of
the wall ABC shown in Fig. (2.57).

Fig. 2.57

2.58. In Fig. (2.58) the gate AB is a quarter-circle 2.5m wide, hinged at B, Find
the force F at A to keep the gate closed.

e
i 5= 1.024

Fig. 2.58



2,59, A valve is located in a square tube which is connected with a reservoir as
shown in Fig. (2.59). Find the resultant of the hydrostatic forces and the turning
mement reguired to hold the valve in vertical position.

Fig. 2.59

2.60. Fig. (2.60) shows a sector water gate. The width of the gate perpendicular to
the paper is 5m. Find the hydrostatic force exerted on the gate by the dammed water
and the torque about the axle O required to hold the gate in place,

Fig. 2.60



2.61. Water is dammed up by a circular cylinder floating flush with the water
surface as shown in Fig. (2.61). The length of the cylinder in the direction perpendi-
cular to the paper is 3m. Find the weight of the ¢vlinder and the horizontal force
acting on the wall by the eylinder.

LT i o
Wall

Fig. 2.61

2.62. An inclined triangular gate is shown in Fig. (2.62). Water on its top side fills

up to the hinge 0. Its back side is exposed to atmospheric pressure. Find the hydros-
tatic force acting on the gate,

1
E top view

[ side view
1Bm —

hottom view



2.63. An engineer has designed a pressure cooker as shown in Fig. (2.63). On top
of the cooker, a tube with 6mm inside diameter is to be used as the valve port. Sicel
balls {with density 7800 ke/m?) arc to be placed on the tube opening as shown. Cal-
culate the radii needed for pressure regulated at 70, 103, and 140 kPa gauge inside
the cooker.

Fig. 2.63

2.64, Determine the vertical and horizantal components af the hvdrostalic foree
per unil width acting on the hinged gate shown in Fig. (2.64). Would the water tend
to rotate the gate?

Fig. 2.64

2.65, Repeat problem 2,64 with the water surface lowered so that the line ol con-
tact of the water surface with the gate centre is 13 below the horizomal.

2.66. Calculate the hvdrostatic force, as well as the torque of this force about the
axle 0, exerted by the water at rest on the gate as shown in Fig. (2.63).

width = 5 m
perpendicalar

o paper

IR S S o e PN S R PP a2 G S S
Fig. 2.65
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2.67, The gate shown in Fig, (2.66) is an integral picce 4m wide (in the direction
perpendicular to the paper) and is hinged at 0, A vertical force F is required to hold
the gate. Meglecting the weight of the zate, find F.

Watler f]

[ i T T B ST A

Fig, 2.60

2.68. Find the hydrostatic force per unit width on the iron block which is shown
in Fig. (2.67).

I m

r i —] Irom block
____________ — .-"--
———————————— \ o 5 i

Water Elliptical I

quadrant

3
dam



Problems on Sections 2-6 and 2-7

2.69. Calculate the diameter of the spherical float, 0.15kg, so as to lift the circular
plug vlave which opens as soon as the water level reaches 1.8m above the plug. The
mass of the plug is Skg and the length of the string is 1.8m, see FFig. {2.68).

Fig, 2.68

2.70. A 3-kg mass of wrought iron, specific gravity = 7.8, floats in a beaker of
mercury. What fraction of the iron is submerged? If sufficient water is poured into
the beaker to cover the iron completely, what fraction of the iron is submerged in
the mercury?

2.71. A hydrometer, see Fig. (2.69}, has a mass of 0.8ke, The graduated stem BA
15 0.25m long and has a cross-sectional area of 0.5 em?, while the bulb below B has a
valume of 107.3 ¢em3, What fraction of the stem BA will be submerged when the
hydrometer floats in water? What is the lowest density the hvdrometer can read?

O R

Fig. 2.69
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2.72. A rectangular block of wood has a cross-sectional area of 120 cm? and a
height of 0.5m. [t floats vertically in water because 10 ils lower edge 15 fastened a
weight of 0.6 kg of lead. How much of the wood projects out of the water? (Take
the density of woad to be 362 kg/m?),

2,73, A solid circular eylinder of radius r and height h has specific gravity 0.72,
Find the minimum ratio r/h for which the cylinder will float in water with its axis
vertical and just be stable.

2,74, An ogean liner 250m long, 30m wide displaces 63 MN of water. The second
moment of inertia of the water plane about its fore-and aft axis is 85% of the cir-
cumscribing rectangle. The position of the centre of buovancy is 2.65m  below
L ventre of gravity. Locaie the metacenire,

2.75. A block of wood, 0.2m x 0.5m in cross section and 0.8m long has a mass of
Hlke, Can the block float with the 0.5m side vertical.

2.76. A rectangular pontoon floating in sea water, 0= 1032 ke/m7, is 23m long,
T.5m wide, 2.5m deep and welghs [50 tons. 1L carries on its upper deck a load of
100 1ons. The centre of gravity of the load is 2.5m above the deck and that of the
pantaon is 1.2m below the deck. Find the metacentric height.

2.77. A buov, as shown, consists of 4 wooden pole 30cm in diameter and 1,.7m
long, with a semispherical weight at the bottom. The specific weight of the wood is
0.63 and of the hattam 7.6, (a) Find the positions of the center of gravity and the
center of buovancy {rom the wop of the buoy. (b) Find the metacentric height.

= S i




2.78. A buoy, floating in sea water of density 1030 ke/m? is concial in shape with
a diameter across the top ol 1.4m and a vertex angle of 60, lts mass is 300k and its
centre of gravity is 780mm from the vertex. A flashing beacon is 1o be fitied 1o the
top of the buoyv. 11 this unit is of mass 55kg what is the maximum height of its cenire
of gravity above the top of the buoy if the whale assembly is not to be unstable?
(The centre of volume of a cone of height his ar 3h/d Crom the veriex.)

279 A rectangular pentoon 1m long, 7.2m broad and 2.5m deep has 2 mass of
T0000kz. It carries on itz upper deck @ horizonial boiler of 4.8m diameter and
mass SO00He. The centers of gravity of the boiler and the pontoon mav be assumed
to be at their centres of figure and in the same vertical line, Find the metacentric
height. Density of sea water is 1025 ke/m?3,

2.80. A rectangular pontoon has a mass of 245 metric tons and a length of 20m.
The centre of gravily is 0.3m above the centre of cross-section and the melacentric
height is to be 1.2m when the angle of heel is 10 deg. The freeboard must not be less
than 0.6m when the pontoon is vertical. Find the breadth and height of the pontoon
il Moating in fresh warter.

2,81, A buoy carrics a light and has a cylindrical upper portion of 2.2m diam and
L.3m deep. The lower portion which is curved displaces 2 volume of 0,396 m?¥ and i1s
centre of buovancy is situated 1.28m below the top of the evlinder. The centre of
gravity is situated 0.9m below the top of the evlinder and the total displacement jx
2.6 metric tons, Find the metacentric height. Density of sea water is 1025 kg m?



CHAPTER THREE
BASIC RELATIONS GOVERNING THE BEHAYIOUR
OF NON-VISCOUS FLOWS

31— 1— Introduction

In thc“presem chapter basic relations that govern the behaviour of non-viscous
flows are considered. The assumption of non-viscous flow is verified in many prac-
tical applications. As it will be shown in the next chapter the effect of viscosity of
the fluid is appreciable within a thin layver known as the boundary layer outside of
which the flow is practically nom-viscous,

Inn the following the conservations of mass and momenium are presented and
applied for both finite and infinitesimal control volumes. In addition the conserva-
tion of energy when restricted to special flow conditions leads Lo what is known as
Bernoulli’s equation. Useful applications of these basic relations are given with
illusirations.

3—2— Velocity and Acceleration in a Fluid Continuum

A fluid element ina fluid continuuwm may have velocity compongnls u, v and win
direction x, v and z respectively. Each of u, v and w may be a function of the inde-
pendent variables, x,v.z and t, s0 that

u=uix, ¥, 7, t)
vy Gl YL e b j G
wo=w (X, ¥, 2, t)

AL time (T + dt), the position of the fluid element becomes (x + dx, ¥y + dy, z +
dz). Retering to Appendix E the total changes in the velocity components are given
as foilows

. " B
dw = grdr + Tax « Dy +
t d¥h

|<'_?
=
(=
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du = g¥de + Pax + Hdy + lde ;

v o ay 3V o 3

dyy + ——cly z 3
voEoppdt ot o ot ot (3.2)

}

Ll
el



Acceleration of the fluid element in any of the directions x, y and z is the rate of
change of velocity component in that direction with respect to time. For example:
the acceleration in the x direction a, = du/dt so that at

L du _ Bu au dx u o dy Bu 4z
8% "FE T 3 © 3x It Ty 4t | 3z 4t (3.3a)

=
-

But since the velocity components u, v and w are equal to T _%31‘:_' and TF res-
pectively, then Eg. {3.3a) becomes

_du _ Ay B au U
a, ar -ﬁ?+u—;r-£+v¥'wﬁ (3-3b]
S
Similarly, the acceleration in the directions v and z take the forms
L}
dv dyr EXS v i (3.3¢c)
E - - = ol Pl P e - — M
o dgeT gren B oge T ¥eg A Wede
- dw _ 3w W aw 2w
T THE TP T Max T Vg tYegs (3.3d)

3—3— Rotational and Irrotational Flow

A fluid element is said to have zero rotation in a plane if the average of the
angular velocities of any two of its mutually perpendicular lines in thar plane is zera.
For example, if one line rotates in an anticlockwise direction at the same rate as the
other rotates in a clockwise direction the particle is distorting but not rotating.

; d
; o3y
|.ﬁ. | wd | z i
i . hiad I
3 ‘ &4 ' |
| | - =
;'“l = iy 114_ Bl = Lnr “\1 —_— J:I" T y
= i z = =¥
| \ i du Bw i _1 dw dv
e l:h"m)‘:fla_l_ :-::I [F] m'ﬂ‘jlﬁ-gi]
!.I:FE& 5 |
e wdy
e -
le LA

1
(a)  wy=} (% -
Fig. 3.1 Rowation of a fluid element

In Fig. (3.1} consider a rectangular element in two dimensicnal flow of which two
mutually perpindicular lines are A4 and BB, The velocity components al the centre
of the element are uwand v. The values of v and v along the lines AA and BB change
with the coordinates x and v as shown in the figure. In a lefi-hand coordinate
system, positive rotation around axis z is the anticlockwise rotation, then the rota-
tion of line AA iz given as follows

By



W : . . C
0A = relative velocity between any two points on the line/distance between the
PwWo points

e d d __ 3u

and rotation of linc BB may be given as follows

i . av dx / dx _ v
0B e Rt ax
The average rotation of these two lines would then be

a5 5 _ ar AU ;
""Jz Es 1{[""‘OA i ml:lE‘l - l { "a‘:f Ay } {3'1"']

1
Similarly it can be shown that, rotati_un about axis ¥
fu o aw

1
Fl —

y © R EX (3.4b)

and rotation about axis x

w

W o= d L oy

e T ok ‘5?-""—'] (3.4¢c)
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If the fluid is icrotational then it should have

vo_ oA av _ 3u
2 = T; 0 . 1.5 Y re
3
oW . g P gy B R S (3.5)
3L ax A 5L 5%
oW i‘:.f. = 0 " j.e —:'.I“ = _E._.:
Eb BZ T k

EXAMPLE 3.1

In a flow field the velocity components u, v and w {ms/s) in terms of distances in
the directions x,v and z (m) respectively are given as follows

u=Jxyiz
1.,-:zx’_"_|_}.2
w=5yz2

Determine
a) The rotational speeds of the fluid elements,
by the componenis of the acceleration in the dircctions x, ¥ and z.and

HiE



¢} the magnitude of both the velocity and the acceleration at x = 3,y = —2and
7=4. '

Data of the Problem

*u=3xy+z, v=2x24+1y2 w=5yz (n
Reguirements
S ﬁx £l NY and MZ

* and
ﬂx N ay E az

-

c and a at (%X, v; z} = (3, =2, &)

Solution
The rotational speeds bl W and w_ are given by Eq. (3.4) as follows:

|=l-‘_a'£_i1'_-':=1 ':'—'-'|=.5'
L4 iy H?-] i[5 & -] v L
r
3] %
m?=;%_%j=;{1-mj=;
Loy (YL Ay - B = 1
wi 3 fix Hyj % [dx ij 3%

The acceleration components a,, a, and 4, are given by Eqs. (3.3). When Egs. (1) are
used to replace the partial derivatives and the velocities u, v and w respecrively of
Eqs. (3.3}, the expressions for a,, 4, and a, become

a, = 0+ (Bxy + 2) (3v) + (2 + ¥y 3x) + (Sy2) (1)
= Oxy? + 3yz + 6% + Ixy? + Syz
= 12x¥? + 8yz + 6x}

a, = 0+ (3xy + 2) (4x) + (2x7 + ¥vH) (2y) + (Syz} (O
= 1257y + 4xz + dxly + 298
= dxz + 16xdy + 2¢?

a, = 0+ (xy + 2(0) + ¢ + ¥3) (S2) + (5y2) (5¥)

lklz + Syiz + 25v3
10x237 + d0yiz

The velocity components u, v and w at (%, ¥, 2) = (3, —2, 4) have the following
values

u=3x3Ix({-2}+4 = —-1ldmss
vo=2 % (37 + (-2 = 22mss
w=5x{=2)x4 = —d4lm/s
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Therefore the magnitude of the velocity becomes
=.\."1‘12 + vz + -,..,r2 = 47.7h mS s

Similarly, the values of a,, a, and a, at (3, -2, 4) are

a, = 12 % 3% (- 2}1+3xq—2)x4+ﬁx{3}3 = 242 m/s?
aF=4><3><4+]6x{3:| X (=2 +2x (-2 = —256 m/s?
a,=10x (R x4+30x (-22 x4 =  840m/s?

and the magnitude of the acceleration at (3, —2, —4) becomes

a=)-"(:r.2 + az +a§ = 010,88 m;’sz

i-4— Flow Rates Through Areas

If the velocity vector “¢’Min a uniform velocity field, see Fiz. (3.2a), is perpendi-
cular to the area “‘A*" through which the fluid is being discharged, then the volume
and mass flow rates through this area are given respectively as follows

,-'
-
. f;”ff
a}-
(e
e "'n
_-_\_'\_‘—_-
fﬂ? {c) fena
i {b)
Fig. 3.2 Flow rates through areas
v =98 g4 (3.6a)
4T
and
" = dm -
ST (3.61)



where t represents time. If the velocity vector is inclined at an angle @  to the axis
of the area, as shown in Fig. (3.2b), then the flow rates are given as foilows

v

C A cos B [3_?3)

(3.7b)

Also, when the magnitude and the inclination of the velocity vector varies from one
part of the area to the other as shown in Fig. (3.2c), then

n

m= pl A cos @

v o= J‘Et C cos © dA (3.82)

“mo= iy oC cos 8 dA (3.8L)

The component of the velocity “C cos 8 ' which is normal to the infinitesimal arca

“dA" may be denoted as **C”". Thus Eqs. (3,8a) and (3.8b) may be written in the
form

Vo= £ Cn @A (3.9a)
mo= f o ey dA (3.9b)
EXAMPLE 3.2
The velocity distribution of water flowing in a pipe is given as follows
C
il

where R = (.1m is the radius of the pipe, r is the radial distance measured from the
centerline in meters, and C m/s is the axial velocity at any distance r. Determine the
mass flow rate of the water,

Problem Description

]LY

T Ey ;ryrs rr Fras

Data of the Problem



rand R inm, Cin ms
*R=01m
* Fluid is water (i.e. £ = 1000 kg/m?)

Eequirement
* mass flow rate, m

Solution
From Eq. (3.9b), we have

]:I'.I = R.ur ;:l{:n li.ﬂ\
. 2
m = S osell - T} [Zm rdr)
R
3
=10ma ¢ (p = L 3y gy
o RZ
r2 T'l1I R
= 10 T - )
T
= % T Rz

Substituting 0.1m for R and 1000 kg/m? for ¢ we pet

n o= ; « Tox 1000 % (0.1)5
= T8.54 kgls

EXAMPLE 3.3

Al the exit of an open reclangular channel hend the velocity ar water surface
varies with the width from 4.0m/s at the outer wall, 1o 1.5mss at the inner wall
avcording o the relation

C5’=4—U='f"x_

where “*C."" is the velocity at any point on water surface,” « ' is a constant and **x”
is the disiance of that point from the outer wall, The velosiey O atany depth in
this cross scction varies according to the relation,

C =Gy =—2%8



where **C."" is the velocity at water surface vertically above the point under consi-
deration, and “z"" is the depth of that point below water surface, 1f the width of the
channel is.1.0m and the depth of water in the channel is 1.5m, calculate the volume
flow rate. Mote that velocities are perpendicular o the exit area of the channel and
the boundary laver effects are neglected.

Problem Description

AR R RNy
]
(=8

WETTEY

d A

Pl L i

—— =

Data of the Problem
*H=13m,h = 1.0m

* velocity distribution at surface: g = 4 -a X )
* velocity distribution at any depth: © = Cg - £ 8 (1T}
* at x=0m Co =4 'mfs
at x= 1 m Ce = 1.5 m/s i
Requirement

# the volume flow rate in the channel

Selution
From Eg. (3.9a), the volume flow rate is given as follows

Vo= { Coda = J-H -I,-.hI I:ES - :U..:I dxdz

A Q 0
1.5 1

= S . [d-a % - ZD 8'} dudz
] o
1.5 :

= (4 x = -5-:1 XoAE = ZD.H] | L
a o

w3



1.5

- Y 0.8
2 3 (4 - 3 a = I ] dz
o
" VRN S (. WO -
= {d esi 3 [ m Z ?] 6
= [&6 = @) = 1.15
= 4,85 - 4 (IV)

Now the constant a is (o be calculated from Eq. (I} and its boundary condition Eg.
(II). The second boundary condition yields

or,

o = 2.5 ]'I'I% fs {V;I

Therefore, Eq. (IV) becomes

Vel B8 HoE

3—5— Conservation of Mass
Conservation of mass is a law of nature which implies that “*In the absence of

nuclear reactions, mass, can neither be created nor be destroved and the sum of all
masses in an isolated system must remain the same at all tmes. "

3-53—1— Application of conservation of mass to a finite control volume

A control volume is an arbitrary volume of an arbitrary shape in space through
which fluid may flow. The control volume may be fixed or moving in the space. The
boundaries of the contrel velume may be rigid or flexible, When a control volume
has rigid boundaries, its volume becomes constant, whereas a control volume with
flexible boundaries has a variable volume, Examples of control volumes with rigid
boundaries are a tank of water with inpul and/or output MNow, g running gutomo-
bile with air input and exhaust cutput, etc.. Among the examples of control volumes

with flexible boundaries are the human lungs, automobiletires and the childrens bal-
loons,

Consider the finite volume shown in Fig. (3.3) into which fluid flows through dif-
ferent inlets and out of which fluid also flows through different outlets and in dif-
ferent directions.
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Cn-:l

Fig, 3.3 Application of conservation of mass to a [inite control volume

The law of conservation of mass would then require that the rate of increase of the
mass of the control velume with respect to Lime should be equal to the difference
between the rate at which the fTuid Flews into the control volume and the rate at
which the fluid lMows owt of the control volume, i.e,

fit =m, -m

oV i o (3.10)

Where the suffixes i,0 and cv refer to inlet, outlet and control volume respectively,
Mow the rate at which the fluid flows into the control volume is

my T o Jey Gy odAp

(3.11a)
and the rate at which fluid leaves the control volume is

Mo = 0y Gy dA) (3.11b)

The rate, at which the mass of the system increases, is given as follows

. 4 .

‘Tt = H [

el T e Veu ! (3.11¢)
wherep , is the mean density of the control volume. The value of p o may be diffe-
rent from the densities of the fluid flowing inte or out of the control volume. Subs-
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titution by Egs. (3.11a), (3.11b) and {3.11c) into Eq. (3,100 yields

; _d s y
gy Egpedfgensfing Copdbosoae € Sy Yol (3.12)

In some cases, the above equation can be simplified. Some of these cases are sum-
marized below.

In a contrd! volume of constant volume Eq. (3.12) takes the form

do

L ogw B .- = ov
Py Cai Wy 7 Ty Gy L) Vev I3 (3.13)

But, if the density of control volume is constant and its volume is changing with
time,the conservation of mass law becomes

i ;] o = § — "
o, e 3 dh . Fop L d.ﬁ'o rodt {314}

Another special case may be of interest, this is the case where the control volume is
constant and the density at both inlet and outlet is constant, then we get.

dp
& - P =V ik
. TE..  dA, ey fC, .MU Voo dF (3.15)

1 ni 1 o

Also, a constant control volume with constant density and uniform velocity and
density at both inlet and outlet is simplified to the following

2 (3.16)
%y Fnl Ialli o Cnu A
and if p, = p, in the above expression, it can be further simplified 1o
Bl IRy, W0E A (3.17)
ni 1 no 0

EXAMPLE 3 -4
“Water flows steadily through the configuration shown in the problem description.
Determine the velocity C,.

i



Problem Description

= [(L02 m?
1= 4 mis

03
]

Data of the Problem
* flow of water (p = 1000 ke/m¥)
* Areas and velocities as shown in the Problem Description

Requirement
* exit velocity C

Solution

Since the flow is incompressible and steady, the application of the conservation of
mass on the control volume bounded by the broken line gives

e S o
=5 % .05 + 2 % 0,1 - 4 % 0,02
= 0,037 m’/s

g;ggl = 48T mie
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EXAMPLE 3-5

A rigid vessel of 2m? volume is being filled with air by a compressor which draws
air from the atmosphere at a constant rate of 0.2 m*/min and discharges it into the
vessel. The temperature of the air in the vessel may be assumed to remain constant
during the compression process, due to heat transfer to the surroundings. Find the
time taken to increase the pressure in the vessel from the atmospheric pressure to
500 kN/m.
Consider air to be a perfect gas that follows the law PY = mRT. Take atmospheric
pressure as 100 kN/m?, atmospheric temperature as 15°C and R for atmospheric air
as 287 J/keKE.

Problem Description

control

/; volume

Atmospheric el 8 .
o ! a

conditions -.tE 9—'—-, :

Data of the Problem
# Atmospheric conditions
P, = 10° MN/m?*
T, = 288 K
R = 287 I/kg K
* input volume flow rate = 0.2 = (1/60) = 1/300 m?/s
* yvolume of the vessel, ¥, = 2 m?
* vessel temperature is kept constant and is egual to atmospheric temperature,

LR
1
|
i
1

L=l i
* airtobeasaperfectgas, P = o RT (1)
Reguirement

* the lime required to increase the pressure in the vessel from atmospheric pres-
sure to 3 % 10% N/m?

Salution
From Eq. (3.10), the conservation of mass yields

s & = - 2
mC"J I11-1 mf_:.

but since there 15 no mass flow out of the vessel, then

o8



a 'a (11T}

where the subseripts v and a refer to the vessel and atmospheric air respectively.
Assuming air to be a perfect gas, Eq. (1T} hecomes

(=9

z Cmry YW T fa Y (av)

For a rigid vessel, i.e. V. = const, with constant temperature Eq. (IV) takes the fol-
lowing [orm

dr 1
o = P 7"1
dz BV
or,
P, ;
! v t
Fi dr = G ,- dt
n v ] "'r\; .
! 4]
ory v Boop
g v o3
2x300 5 10° - 10°
1 1 05

2400 seconds
0 minutes

3-5-2— Application of conservation of mass to an infinitesimal control volume:
continuily equation

Consider a control volume, Fig. (3.4), in a fluid continuum that is made up of a
parallelepiped Muid element of fixed dimensions dx, dy and dz and fixed in space,
Since mass car uener be created nor be destroved, hence in any period of time the
rate of change of the mass of this control volume is equal to the difference belween
the sum of the masses that entered and those that left the contral volume,

9



Let us now consider u, v, w and ¢ to be the velocity components in the directions
%, v, £ and density respectively, at the geometrical centre of the Muid element. The
rate of mass flowing into the contral volume in the dircction x is equal o

+ _ ] (&5 dx i
Mg pimydipdzs a{x ) dy dz >~ {3.18a)

The rate of mass flowing out of the control velume in direction x 15 equal o

II:: mopour ooy dzi—w dx

o dy dz > (3.18h]

The net change of the mass of the control volume due to flow in direction x is the
difference of the above two quantities, 1.¢.

' 5 _ 3 -
e =~ Mo = = % {pu)] dx dy d: (3.19a)

W-J_; hn
oy Al d=
BE E

"
4
3

it

B»E

Fig. 3.4 Application of conservation of mass to an infinitesimal control volume
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Following the same analysis the change of the mass of the control volume due to
flow in directions ¥ and z can respectively be given as follows

L

. W , 3.19b
myi m},g g (o v) dx.dy dz ( }
; 5 3 !

Wys: =iliys B sngs {0 w) dx dy dz {3.19¢)

Also, the rate of change of the mass in the control volume is given as tollows

i am
£l B Bkl =
cr 31{‘1

-:;.:l as

= [ o} dx dv dz (3.2

The conservation law, Eq. (3.10), can be rewritten in terms of Eqgs. (3,19 and (3.20)
as follows

8 = - B_ 7 A

AT { o] dx dy dz 2 | pul dx dy de
5

- B (o w) dx dy dz

- 5= (o w) dx dy dz

(3.21})

which is the continuity equation for compressible three dimensional flow. Some
cases can be derived to simplify Eq. (3.21). For example, at steady state conditions
Eq. (3.21) becomes

a(en) | Blevw)

ax Fin

LF]
Lo’
=
x
p—_

+

= 0 (3.22)

X}
E

A further simplification can be obtained if the flow i3 two dimensional, thus

eud | oalov)
s X :

= = 0 {3.23)

Furthermere for incompressible flow, i.e. constant density, it becomes

o, v

|;_':.

ax oy

(3.24)
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EXAMPLE 3.6

The following velocity components are claimed to be possible flow cases of water
continuum. Check this claim neglecting any possible variations in the density of
water

A =Xy, V¥ =y, W=yz + 7%

byu=x+y+ z, ¥ X— ¥y +iLw =%+ y

Data of the Problem
* Claiming two possible flow cases of water continuum
A} = XY,V = VE,W = ¥ + #°
blu=x4+ v+ 2 v=xXx—y%¥+2zw=23x+y¥

Requirement
* Check these two claims

Solution

If the claim is correct, the velocity distribution should satisfy the continuity
equation, Eq. (3.21). Since water can be considered as incompressible fluid, Eg.
{3.21) can be simplified 10

Au oo, W i
x Ay o 2 G (0

a) Substitute by the velocity distribution into Eg. (1), this yields

(¥v) + {2} + (v + 2z) = 2y + &z
F O
i.e. the given velocity distribution can not be a possible flow case,
b} Similarly, the continuity equation, Eg. (1), becomes
(-{H+0=0
i.e. the velocity distribution is a possible flow case,

EXAMPLE 3.7

In & steady incompressible forced vortex flow the velocity components in direc-
tions x,¥ and z are u,v and w respectively. If w is independent of x and v, and u and
v oare given as follows

u= -0
and
v =0x

where £ is the angular velocity. Find the expression for w. Also, calculate the rota-
tional speeds around the coordinates %, v and 2 +

o2



Data of the Problem
* steady, incompressible flow

tw A wn, M iy
= — Oy, v o= 0Oy (I
Requirements

* the expression for velocity component in direction #, w
* rotational speeds; ¥y Oy 0wy
Solution

The continuity equation for steady incompressible flow, Eq. (3.21), is simplified
ta the following

i

du av aw _
x Ty tae T O (TIT)

Substituting by Eq. (I} in the above equation, we get

0+ 0 + ;.."% 20
oar
wo=Ff{x,y)
but recalling Eq. (1), then (V)
W = constant

The rotational speeds of the fluid elements are given by Eq. (3.4). These give the
following

) - 1 iw Ay
. P 2 = 0
. = i l"—". a dwW =
P ™ B NaE 3% =0
by =g ¥ By g g
z dx N

which means that the flow is rotational only around the axis z, and its rotational
speed is equal in magnitude and direction Lo the angular speed 0.

I-6~ Momentum Principle

In a general control volume moving with velocity C, with mass efflux and mass
influx, the momentum principle states that the rate of change in momentum of the
contral volume in a certain direction is equal to the rate of momentum influx in the
same direction, minus the rate of momentum efflux in the same direction, plus the
sum of forces acting on the control volume in the same direction. For example, the
momentum principle in the direction x becomes
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Rate of change in momentum of C.¥. in direction x
= Rate of momentum influx in direction x
- Rate of momentum efflux in direction x
+ Sum of forces acting on C. V. in direction x {3.25a}
or . : :
Gx,cv - Gx.i_ B GK,G * LE, (3.25b)

where G represents the rate of momentum and £ F is the sum of forces acting on
the control volume. The subscripts x, cv, i and o refer to direction x, control
volume, input and output respectively. The term A{; means the rate of change of
momentum. [0 the following two subscetions, Lthe momentum principle, Eqg. (3.25),
i5 1o be applied to both a finite and an infinitesimal control volume,

3—6~-1- Application of momentum principle to a finite control volume

Consider the control volume in Fig. (3.5), the individual terms of Eq. (3.25b) can
be wrilten as Tollows

- = d

G:-:,l:.v R [mcv UC‘I.Fj (32'6‘3)
- - . 1' , 2

iy, i l.:,'_{ u dmi J{j_ PiUL Cni d.ﬁ.i (3.26b)
i ) _

GK,O ;"ILJ_{ uC' Id'Tnl:I Ao pDu{J EHO dﬁ".} EEZEIC-}I

Therefore Eq. (3.25b) becomes

Fig. 3.5 Momentum principle as applied to a finite control volume.
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dim_ a3
SR poou. £ dA ' C A £
j ih. - o *
3 4i i B, L oy il R T
Ao
or
EF. = m a B 1) £ S
1 fop u G dA = CeeCd
cv “x,cv cv ev L oo o Ton 4 Pititni®hy

(3.27a)

where a, ., = du,/dt is the acceleration of the control volume in the direction x,
C,; and C, are the relative inlet and exit normal velocity component respectively.
Similarly, the application of the momentum principle in the directions v and z res-
pectively gives

T A - O Rt e e o
E E a PR IR D . di 5y Uy
'FY Moy By, cv gv T gn DesenTho o i i'n
(3.27b)
and

L ] - . v %l;“'

i + oW m + Popow G dA - A T ey - LS

zFs Moy 2z, cv “cv ov he o'e "no 0 g icimicoi
(3.27c)

If the flow has a uniform velocity at both inlet and exit of the control volume, Eqs
(3.27) are simplified 1o

=n ¥ AL + - m.u.,
2y Mevix,cv evler T Moo i (3.28a)
IF. = m__a + v W + MLV = MLV,
¥ vy ov e M N R {3.28b)
EF_ = m__a + W + MW - Mm.w. y
z eviz,ev T Yever T Mo GHLSE {3.28¢)

Note that the rate of change of the mass of the control volume m,, may be given by

Eq. (3.10).

EXAMPLE 3.8

A rate of 200ke/s of oil (sp. gr. = 0.8) flows through a 45° elbow of diameter 10
cm. The pressure of oil at the inlet section is 300 kN/m? abs. A nozzle of area ratio
2:1 15 connected o the elbow exit. The nozzle discharges directly to the atmosphere
at 100 kN/m? abs. Calculate the force required to hold the assembly of elbow and
nozzle at rest.

ns



Problem Description

Atmosphernic
pressure contral
M volume
|
oil I d

® . .
¥ Atmaospheric 2
Ry T W pressure ~ \\
X B =45 ?_\
—_—

Data of the Problem
* flow of oil, sp. gr. = 0.8, through the assembly shown in Problem Description
P = 3% 100NmE P, = 100 N/m#
*mg; = 200 ks

*d=01m
*AA, =2
Requirement

* the force to hold the assembly of elbow and nozzle at rest

Solution
Applying the momentum principle in the direction x, Eq. (3.28a), to the shown
control volume vields

PRy = Mew %x,cv cv Mev | Mg Y T My Yy (1)
but
p,ev T Uy =0 (assembly at rest)
EF o= fPiras
X ( E letm:I Al - Rx
0. = CZ cos A
Ul = Cl

Then Eq. (I} becomes

Lo



[PlnPatm] Al + Rx = hc Cz cos 8 - m. Cl (11)

At steady, incompressible flow the conservation of mass leads to

oT

Therefore, Eq. (I} becomes

A
. LR 1 .
{Pl-Patmj Ay R, =mCy { EE cos B 1)
. A,
= = = PR i o e
Rx m Fl { E; cos B 1) ‘[1 patn]AI
Ly
But, Since
m =y Ly Ay
Then
C. = m = 200 = 31.83 m/s
LT 500 x & (0.1)°
and Eq. (1) becomes
R, = 200 % 51.83 (2 cos 45 - 1) - (3 - 1)x 10°x J (0.1)2
= 1066,087 N

Applving the momentum principle in the y-direction yields

m_+tm_ v, - M V.

EFy * Moy Ay cv Y Vew Mov o a 11
which can be simplified Lo
RY = = m Cz 2in B = = m Cl EE 5in @
- 200 » 31.83 = 2 x sin 48§

- B002.88 N
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and, therefore

J 2
xe
JII066.08)

and at an angle ¢ from the horizontal given as follows

R

Pty

4 (9002.88)% = 0065.78 N

1 -0p02.88 < gt

¢ = tan
»o L)

EXAMPLE 3.9

A rigid container 60 cm high with an inside cross-sectional area of 0.1 m* weighs 2
kg when empty. The container is placed on a scale and water flows in through an
opening in the top as shown in the problem deseription. The pressure is atmospheric
at the inlet and around the tank. Determine the reading of the scale when the water
height in the tank is 55 em (neglect change in the velocity of flow between nozzle exit
and water surface in the tank ).

Problem Description

wf.:mm.: = & mfs

* Avcasie = 1,01 m?

control =1
volume ]
Y
H = #llem

e
)
SRR |

z
= B
L~ L g P LT ——— l

1 B ! |
//;%W /AH—Sca]e

Data of the Problem
* water tank on a scale as shown in the Problem Description
* dimension of the container, A, = 0.1 m?, H = 0.6m
* weight of the empty container, W, = 2 kg
* nozzle condition: Ay = 0.01 m? Cyy = 6 m/s,
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Reguirement
* The reading of the scale when the water height is 55 ¢m, i.e, h = 55 cm

Solution
Applying the momentum principle in direction ¥, Eq. (3.28 —b). gives

£ g ;
= * ! + FRT _ T S
EF}r Moy f/'&)f,{:v Vev/ Mev moff Vew T Mg Vs
. _I.I
Ly 0 La 0 Ly
or, .
L - M.
F,}r = mL1 v.l
ar,
Ry "W, W = =iy 0 Gy

where W iz the weight of the water in the tank. Therefore

7

R:f" - 2 E = pw ."-'\hg = 0 AN E-h:
or, _ ]

B.ie 10 % G.00 % (B)° H2Nelere 10%N0. T ¥ 0.55 % 9.8

y
= 918.6 N
the scale reading = R:r, /g = 918.6 / 9
= 43,7 kg

Nate that if there is no momentum input in the direction y the reading of the scale
would be

scale reading (at no flow) « (W,

+ '-*’h. Y g
= 2 4 lD ¥ 0,1 x 0,55
= 37 kg

i—6-2- Application of momentum principle to an infinitesimal control volume;
Euler's equations

Here the momentum principle is to be applied to an infinitesimal control volume.
Select a control volume, fixed in space, with fixed infinitesimal dimensions dx, dy
and dz, Velocity components at the centre of geometry of the control velume are
assumed to be u, v and w in directions x,v and z respectively, For easy reference, the
different faces of the control volume are numbered as shown in Fig. (3.6).

The rate of momentum influx to the control volume in direction x is the sum of

the rates of momentum influx through faces “*1*", 3" and **5" of the control
volume; denoted as G, |, G, ; and G, ; respectively. The latter are given in the

forms
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PR ST
i B I
; = @
G:{,S { puv i
G o BUE o s
X,E L oo U e

Csu) 95 ) dy 4z
dy -,
Lo Ez it (3.29a)
Couw) 92y ax gy
i
} 3
b S
& &
Tl Ry
-leﬂ.“ 9:‘5-/ qfﬁfa‘
e /

E
Mg

Fobf gz
=

Fig. 3.6 Raes of momentum influx and efflux

Aldsa, the rate of momentum efflux from the control volume, in direction, x, is the
sum of the rates of momentum efflux from faces *2°7, “4™ and **6"" of the control
volume; G, ,, G, ; and G, ; respectively. These take the following forms
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2 ) 2..d
GX,E = [P 3 { ou™) —;‘ } dv dz
; =2 ta 3 r {!'h' 1 E
Gde {p uv + -E!_}' [ QU‘-} -‘3— ] dx dz f32‘;’h}
G:-c,ﬁ = [p uw + :_:', {o uw) ':21—3 Todx dy

The net rate of momentum influx and efflux in the direction , pri = Gy g, can be
obtained by subtracting the sum of Eqgs. (3.29b) from the sum of Egs. (3.29a) which
vields

8y & =i = 1 -_,BI (eu®) + & fowv) + X (ouw) 3 dx dy dz (3.30)
The above equation is the value of the first and second terms in the right hand side
of Eq. (3.23b). The left hand side of Eq. (3.25b), i.e. the rate of change of
momentum of the control volume in direction x is caleulated az follows

_ 3
Gx,{:v_ﬁ Coecdidydeiae Yy
= %? (pu) dx dy dz (3.31)

Only the last term in the right hand side of Eq. (3.25b) is still unknown. The resul-
tant force in direction x is the sum of two parts. The first part is the net pressure
force in direction x which is given as follows

(» - 22 4% 4y a4z - (p 2 gy a2
= . BB dx dy dz

b o

The second part of the resultant force is the net external force acting on the control
volume in direction x which can be assumed as 3, per unit mass of the fluid. There-
fore the resultant force in direction ® becomes

:.:j

l

E];x = DB}«' dx dy dz - dx dy d= (3'32}

e
i

Equation (3.32) completes the caleulations of the various terms of the momentum
principle given by Eq. (3.25b). Substitution by Egs. (3.30) to (3.32) into Eg. (3.251)
gives

=
O 1 it . alpu”) slguv]
PE T X 3¢ Loyl * 5 i Y
Al puw
Pl e (3.33a)

where the volume of the control volume dx dy dz is eliminated from the equation.
The equation can also be written in the form
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5 s BB capy pedia dlANd o BERY) o BURYD
2

X It ak J¥ a2
3 aLL il I I
TR gy ey YNy TR (3.33b)

The sum of the terms between the first sguare brackets is equal to zero from the
continuity equation, Eq. {3.21). Therefore, Eq. (3.33b) becomes

1 3p _ & o, U m
b T ToTar gy e hWisgs (3.34a)

By analogy to the above procedure, it can be shown thal the momentum eguation
in directions v and = can be written as follows

g e A B e B M g B OV (3.34b)
¥ I 3t P &y e
and
. _k E.]_) - #w Aw ER -8
By b 7z e - Segy ¢ g WV

(3.34¢)

where 13?_ and [, are the net external forces per unit mass in directions y and z res-
pectively.

Equations (3.34) are known as Euler’s equations indirectionsx,y and z respecti-
vely, The right hand sides of these equations are the accelerations of the fluid in

directions %,y and z as given by Eq. (3.3} Euler’s equations may also be stated in the
form

5y - L 3B -
7 0 Ax ¥ i
_1lap
Ty T %y (3.35)
B, - 122 .ga 1

EXAMPLE 3.10

In steady incompressible flow the velocity componenis are given as follows

u o= Zx myfs
Vo= iy mis

1

mi s

rd| L



Determine the pressure distribution in the flow if the pressure equals the atmos-
pheric pressure at the point (0, 2, —1).

Data of the Problem
* steady, incompressible flow

LR | B Vo=l y ,w=--§—?.
* P roo = =
P =Py 8t (xy,z) (9,2,=1)
Eequirement

* The pressure distribution, P = P (x,v,2)

Solution
Assume a gravitational field with acceleration - g in the direction z. Euler's equa-
tion in the direction x, Eq. (3.35), vields

13 e Mg Mg 0
e SRR N e ¥y
or
Lo - (x % 2) = - x
o
7
Po==2 ox” v £y (¥, 2) (I}

Appling Euler's equation in the direction v, Eq. (3.35), gives

_ 1l ap | v 0P . O
5 v u3x+ma—}r+ﬁﬁ—4}f
-]
- b
B =gl v £y D) (I1)

Appling Euler's equation in the direction z, Eq. (3.35), gives

O ) N ; Bu oo _ 25
- - BT moas Tx Y N FE 0
2y i S ]
BE gl =
B! BimepPE = izt I x f3 [x,v] (111}



The three expressions for P as given by Egs. (1), (1) and (I} are supposed to be
identical since P should be the same as concludad by the three expressions. Compa-
rison of the three expressions gives the values of f;, f; and ;. For example compa-
ring (T} and () we get

PE g e £ (r,2)
= -5 vO e £y (x,1)
Therefore,
ca]
£y o - Syt e

£,0x,2) = - 2¢ x° + 4, (2)

Now substituting by the value for f; (v,z) in Eq. (I) and compare the result to Eq.
(I} we get '

<= 0
T il (1v)
wr ; 24 2 )
= —.pBZ.— = ol + -['3 I::\.!}’F\F
By comparing the above two equations one may conclude that
:bl{;] = - gag = %— gzz + K (V)
where K is a constant. Then Eq. (IV) becomes
p:—?axl—%}fz—ngz —Eg- :-zg+K
L % [1& xz 4 yz + fgz + 15 :2} + K (VWT)

Since P = P, at point (0,2, — 1), then

Parm = - % (o + & = 8g + 25) + K
or X = Py *+ § (29 - Bg) = Par + § (29 - 8 x 9.8)
= Faem - g x 49.4

and Eq. ({IV) becomes

. _ i / z z
P=Pgem = - %— (146 x° + vz #oBpr o+ BSUETTR 4G, 4
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3—=7— Conservation of Energy

The previous analvses were made emploving the laws of conservation of mass,
momentum principle and Newton's sccond law, Further development of some of
these laws shows that the law of conservation of energy has useful applications to
fluids in motions. The conservation of energy implies that the energy content in a
fluid ¢lement is constant. The following analyses are made under the conditions that
the flow is steady and irrotational or steady and streamlined. The mathematical
expression for the conservation of energy under the above conditions is known as
Bernoulli's egquation.

3=7—1— Bernoulli's equation for steady irrotational flow

For a steady flow (that is independent of time) Euler’s equations (Eq. 3.34) take
the form

R B e B g B (3.36a)
X pooox R By 4.2
L N R S | 5 3G
B TS v Yk TV owy TV R (3.36b)
1 a = o qw A
By G R e (3.36¢)

The external force components By ﬁ}, and I, may be expressed as partial derivatives
of a particular potential {e.g. magnetic or graviltational field) denoted by £, where

=28, a2 and g o= 22 (3.37)
Therefore Eqs. (3.36) become

B o el e s el g il (3.38a)

S g ax Es 2 oL

Eﬁ i —,31? L (3.380)

Substituting the conditions of irrotationality as given by Eqs. (3.3) into the above
equations we get

a1
2
ak
=
)
=
ar
-
&
-3

o 1 = au BY L, AW S0
ST §oEr - H gy R Yy T Was (3.39a)
v @ L R v W (3.39b)
ay gAY av ay Iy

i1 R N 1. O & . —
2z s 3z Yaz Y oaz 1z (3.39¢)



Multiplying Eqs. (3.39a), (3.39b) and (3.3%c) by dx, dy and dz respectively and
adding the three equations, we gel

EA% tie i 2R g e R a1
i R dI
R S DU ;E v + 2P 4z 1
¥ BX bR i
. I b L T anu 1
M [ax ¥ B dy * 5 4z
XY av - W
LR {_Enx dx+ Iy Qi dz
CorPW g AW ’ i g
il [:'lx L By dy az dz [3'4ﬂ}

This may he simplified to

!
i '5 (1}'3

wodu s+ dv o+ ow du

2.
= d v e wS)
or ]
cany v BBig g
P ; (3.41)
where the total velocity C is given as follows
= . 2
ci m %l a W w0 e’ (3.42)

In many engineering problems, the only external force that acts on the fluid may be
that of the gravitational field. In such cases d€ is given as follows

(5]
da = 28 4z 8oz

gz

{3.43)
R

-
o

henece Eq. (3.41) becomes

g dz + E;E £ A0 = o (3.44)
that is
dm {’2
;oads 4 ;_;- * - = constant (3.45)

The above equation is known as Bernoulli’s equalion.

The first term in the equation represents the potential energy per unit mass, the
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second term is the pressure energy per unit mass, and the third term is the kinetic
energy per unit mass of the fluid. Therefore Bernoulli’s equation, Eq. (3.45) states
that the sum of the above three kinds of energy is constant at any point in the flow
on condition that the flow is

1. irrotational

2. steady

3. non-viscous

4. subject to gravitational field only

If the fourth restriction is not satisfied, like the case of a flow subjected to a
magnetic field as well as to the gravitational field, Eqg. (3.41) should be used instead
of Eq. (3.45). LEquation (3.45) can be further simplified by the assumption of an
incompressible flow and a constant value of g, This vields

7
gz +E + g_ = constant (3.46)

which is known as Bernoulli’s equation for incompressible flow.

It is important to note here that the constant on the right hand side of Eg. (3.46) is
the same all over the field of a fluid continuum as long as the flow is incompressible
and irrotational. This is different from what will be shown later as the constant of
Bernoulli’s equation for a stream tube or a streamline in an incompressible but not
necessarily irrotational flow.

3=7-2~ Bernoulli’s equation derived for steady streamlined flow

A streamline is a line drawn in the flow whose tangent gives the direction of the
velocity at any instant of time. For steady flow, the shape of the streamline does not
change with time,

A fixed control volume of height ds in the streamline direction and of a cross sec-
tional area dA is shown in Fig. (3.7). The pressure, density and velocity at the centre
of the control volume are taken as P, p and C respectively.

Now the momentum principle is to be applied to the shown contral volume.
Selecting s as a coordinate in the direction of the streamling, the momentum prin-
ciple (Eq. 3.25h) takes the form

o 5 kb i N 5 rp
Gg Ses s [Jsrﬁ 5 (3.47)

The individual terms of the above equation are to be determined now. The sum of
the external forces in direction s is given as follows

. ap s 3p ds dz
E;.S = [P- ?E %] da - [P+ -52 53—] dd - sda dsgp Iz
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e dz
= - 45 ds dA - g2 da ds 3o {3.48a)

By definition of a streamline there is no flow crossing the streamline. Therefore the
momentem influx and efflux to and from the control volume respectively, become

Fig. 3.7 Control velume on a streamline
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[}
=
[y}

1
S
|w

]

(=9

N

5,1 35: -5 (3.48b)
g Al ds
S50 TMC + mgs £2 (3.48¢)
where
m o= pc dA (3.48d)

Also the rate of change of momentum of the control volume is given by the follo-
wing relation

G =L (oC dAds)
= g {being a steady flow) {3.48¢e)

Substituting by Egs. (3.48) into Eq. (3.47) yields

Dggi*%‘“c%:‘] (3.49)

Thizs can be rewritten as Follows

dz 1 3 i1 ?C?' =0
E3s Y5 oEs ! s (3.50)
Integrating the above equation along a streamline gives
dp o
gz + [~ + 3 = constant (3.51)

where the gravitational acceleration, g, is considered constant. In equation (3.51)
the value of the constant changes from one streamline to another, and it is constant

along a streamline. The application of Bernoulli’s equation as given by Eq. (3.51), is
restricted to the following conditions

1. Points on the same streamline,
2, Steady flow, and
3. non-viscous flow,

EXAMPLE 3.11

A water tank has an orifice of diameter 10 em on its lower side. If the water level

is kept constant at 4 meter above the orifice centreline, Determine the efflux velocity
out of the orifice and the discharge.
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EXAMPLE 3.12

Air flows steadily and at low speed through a horizontal nozzle. At the nozzle
inlet, the flow velocity, pressure and area are 10 mss, 100 kN/m? and 0.1 m? res-
pectively. At the nozzle exit, the area is 0.02 m2. The flow is essentially incompres-
sible and non-viscous. Determine the velocity and the pressure at the nozzle outlet.
Take the density of air as 1.23 kg/m?.

Problem Description

[ e R T A I comirol volume
i L
| r
I I
[ flow -I|r -’ff';zzr; Ly £l J i
...... gy ) ST e
I
|
|

Data of the Problem
*Point 1:C; = 10m/s , P; = 10° N/m2, A, = 0.1 m?
*Point2: A, = 0.02m?
* flow is steady, incompressible and non-viscous
* density of air, p = 1.23 kg/m?

Reguirements;
*Cyand P,

Solution
Apply the continuity eguation, using the shown control volume

E3=£1?L—j=lﬁxg—:%¢z=5(3|nfs (1)

Apply Bernoulli’s equation, Eq. (3.51), along a streamline between sections (1) and
(2) it yields

™
_Z
ju

i}
(]

2
= _
+gzl+2_ =

L
p

(1T)

Iuim %]

+ggq+
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Meglecting the potential difference between sections (1) and (2) Eq. (1I}) becomes

) 7 2
P, =P+ § (€ -6

= 10° + 1:23 (100 - 2500)
P, = 98524 N/m’

3 — 8 — Calculation of the Pressure Distribution in a Flow of 2 Known Velocity Field

Both Euler’s equations and Bernoulli’s equation can be used to calculate the
pressure distribution in a non-viscous flow if the velocity distribution is predeter-
mined. Euler’s equations are used to calculate the partial derivatives of the pressure
with respect to the directions x,v and z. The pressure distribution is then determined
by integrating those partial derivatives of the pressure. Whereas Bernoulli’s equa-
tion gives directly the pressure distribution without extra work for integration.
Therefore, since Bernoulli's equation is easier to apply one should be careful to
assume all the conditions required for its application as given in subsection
(3—6—1)and (3 —6—2). If all the conditions are not satisfied there is no choice but
to use Euler's equations. This will be illustrated by the following examples.

EXAMPLE 3.13

In EXAMPLE 3.10, is it possible to determine the pressure distribution for the
flow by using Bernoulli's equarion instead of Euler's equations? If ves, determine
the pressure distribution.

Data of the Problem
* Steady, incompressible, non-viscous flow

Z

]

*u=2x , v =1y ,w
TP o= Py at (%3 ¥, 2) = (o, 2, 1)

Requirements

* Check the possibility of using Bernoulli’s equation to determine the pressure
distribution.

* If possible, then determine the pressure distribution

Solution

Using Eqgs. (3.4), the components of the angular velocity are determined as fol-
lows
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- dw oV

B il I =

E S T - B

e il Al .. AW o

fromialiag < ) ¥R
= W

i.e. the flow is irrotational, and since it is steady Bernoulli’s equation can be used to
determine the pressure distribution in the flow, Under these conditions, Bernoulli’s
equation for incompressible flow in a gravitational field is given by Eq. (3.46) as
follows

Pt

(]

gawoe ¥ .5 % (1)

Ix.,l

where K is a constant, Therefore,

P=-p (}C°+gz-K
but
. - o
5 u2 oyt ooy
2 o =
= Ax" g 1 v o4 -%—:‘. zz
therefore S
P=-f 6 x" «y? 42528 4 50z - 81 (1)
Since P = Pﬁm at the peint (o, i, =1), then
P £ = y
Potm T (o # 4 +-28 g K]
. _ 1]
or, B SRR z 2 R R B
] .
Pasrm = 7 fda.4)

and Eq. (II) becomes

which is the same answer as that given in EXAMPLE 3.10. As we can see using
Bernoulli’s equation to obtain the pressure distribution is simpler than using Euler’s
equations, Note that if the restrictions to Bernoulli's equation de not apply there is
no alternative bul to use Guler’s equations.
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3—9— Application of the Momentum Principle to Turbomachinery

The momentum principle is the basic principle in the operation of turbomachi-
nery where the rate of change of the momentum of a fluid stream upon its reflection
by a vane is equal to the foree interacted between the fluid and the vane. This foree
when multiplied by the velocity of the vane gives the power exchanged between the
fluid and the vane.

The analysis of a fluid jet reflected by a fixed vane is now discussed. This arran-
gement is shown in Fig. (3.8). Assume the following

Fig. 3.8 Flow of jet on a fixed vane

1, steady, incompressible, non-viscous flow,

2. the change in the potential energy is negligible when compared with the kinetic
energy of the jet and

3. the jet enters and leaves the vane tangentially,

Therefore, applving Bernoulli's equation between points (13 and (2) on the inlet and
cutlet of a streamline, as shown in Fig. (3. 8 ), vields

Py c% P, c%
i = i + =1
: T Py 7 (3.52)
Assume Py = P, atmospheric pressure, the above equation becomes
E -
1 TG oxc (3.53)
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Mow let us apply the momentum principle, Eq. (3.27a), to the control volume shown
in Fig. (3. 8). The following equation can be obrainad

F.oo=m a + 1 + - 3
% EV “x,Cv ¢y Mgy © MC €05 B - ing (3.54)

where F, is the reaction of the vane on the control volume in direction x.
For a fixed vane each of the first lwo terms in the right hand side of the above

equation eguals zero. Thus, Eq. (3.54) is simplified to

F.=mC {cos B -1) (3.33a)

Similarly the momentum principle in direction v, Eq. (3.27h) gives

By = m C sin & {3.55h)
Again F_is the reaction of the vane on the control volume in direction v. Note that
E and F:.r are the components of the external foree acting on the control volume due
to the vane, This external force is equal in magnitude and direction to the force
reguired to hold the vane at rest,

(c - )

(b ©

Fip. 3.9 Flow of a jet ona moving vane

12
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Let us now consider a moving vane with a constant velocity ,u, as shown in Fig.
(3.9a), If we superimpose a velocity (—u) on both the fluid and the vane, the
analysis becomes equal to that of a fixed vane as shown in Fig. (3.9b). This means
that the flow enters tangential to the vane with a relative velocity (C-u) and leaves at
a relative velocity (C-u) tangential to the vane. This is better illustrated in the polar
vector diagram in Fig. (3.9c), from which the magnitude of the leaving absolute
velocity C, is given as follows

C2 = "./{u* (C-u) cos 8 }° + { (C-u) sin 8 }2 {3.56a)
and it makes an angle & with direction x, that is given by the relation

y _ [C=u) sin @&
e k3o0d]
The fixed vane shown in Fig. (3.9a) follows the same relations as that in Eq. (3.55)
but with a fluid inlet velocity (C-u) instead of C. Therefore, the components of the
reaction of the vane on the Mod control volume are

F. = i (C-u) (cos & -1) (3.57a)

F_ = !IT! {E—'L'I:l zin A {BSTb}

Y
The components of the action of the jet on the vane have the same magnitudes as the
components F, and F, but in the opposite direction, When the vane moves with a

constant velocity u in the direction x, the power transferred from the fluid to the
vane is given as follows

ST (3.58a)

owWeT
P X

-mu {C-u1} {(cos B8 -1} (3.58h)

n

Another way to prove Eqs. (3.57a) and (3.57b) can be through direct application
of the momentum principle Egs. (3.27a) and (3.27b) to the moving vane shown in
Fig. (3. 9 a). In direction x, this gives

Fx= mC?_-:n::-stb—mEZ

From Fig. (3.9c), the value of C, cos & can be substituted to give

F.= m {u + [C-u) co6s B8 } -mC
M (C=u) (cos & =1)
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which is the same as Eq. (3.57a). Similary, the momentum principle in direction ¥
gives

Fy=m[:2 sin %

and replacing C, sin ¢ by its equivalent expression from Fig. (3.9¢) vields

f:_,,_ =omo{C-u) $in. g

which is the same as Eq. (3.57b).

EXAMPLE 3.14

A5 cm diameter nozzle is used to produce a water jet having a uniform velocity 50
mss. The jet strikes tangentially a vane moving at a constant velocity 10 m/s. If the
vane has a deflection angle of 60°, draw the polar vector diagram for the flow over
the vane. Also, determine the absolute velocity of the fluid leaving the vane and the
power transmitted to the vane.

Problem Description

<
..--'ff __r j
a u = 10m's

C=c = 50ms ey s
M i i
g S ey

d=005m

moving vane equivalent fixed vane

Data of the Problem
* water jet strikes a vane
* numerical data is shown in the problem description

Requirements
* polar vector diagram
* absolute velocity of the fluid leaving the vane, C,
* the power transmitted to the vane

Solution
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Polar vector

diagram
origin
From the diagram,
C, = 46 mis
= 49,59

Alsa the value of C, and ¢ can be determined from Egs. (3.56), these are respecti-
vely as follows

y : e -
C, = -‘f [10 + 40 cos -ﬁt}}z + (40 sin 60)° = 45.8 mfs

40 {ain 60Y

-1 o o
¢ = kBN L yoeipoToos ROy b o eadd

In order to calculate the power transmitted to the vane Eqg. (2.58b) is used

Power = - i u (C~u) (cos & -1)
- 9P 7 ac u EC-U}:I' {cos B-1)

“JE % 3

L (0.05)2 %40 % 1040 (cos 60 -1)

5
= 15707.9% Watt

(N.m/s = Watt)

3— 10— Static, Dynamic and Total Pressure in Incompressible Flow
3—10—1— Definitions

For steady incompressible non-viscous flow with no significant change in the ele-
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vation z, Bernoulli's equation, Eq. (3.51) can be written as follows

2

P 5 i =
S+ 3= = constant (3.59a)

At two points (1} and (2) along a streamline, the above equation yields

v
)

2 2
1 2

=
[
[

1
e Bt T
= T3 & z

= constant (3.59b)

Mow assume that at stage 2 the velocity of the tluid is zero, then we gel
T
C‘i 2
Pi= P o= P 4+ w= = B, R {36“}

where P and C are the pressure and velocity at any point along the streamline and P
is the pressure at zero velocity which is called the stagnation pressure or the total
pressure. The equation also shows thart the stagnation pressure P generally changes
from one streamling to another. If the flow is also irrotational, then the stagnation
pressure will be the same through out the whole flow regiem.

Equation (3.60) lends useful means for determining the velocity at a point in a
flow field. For example, consider a fluid travelling at velocity “C°" and pressure
“P* in a duct or otherwise, If by some means a small amount of this fluid is
brought to stand still, the pressure of this amount can be given by equation (3.60),
which may be rewritten as follows

B, MR (3.61)

where P is the static pressure and P, is the dynamic pressure, which is defined by the
following equation

E &
g S s (3.62)

3—10—2— Pitot static tube

In practice, the apparatus used for measuring the velocity of a fluid by employing
the above described phenomenon is known as the static pitot tube. A sketch of this
tube is shown in Fig. (3.10). At point (1) a flowing fluid has pressure P and velocity
C. At point (2) (i.e. tube nose), a staghation state exists with stagnation pressure B
which can be measured with a manometer. However, when the flow turns around
the tube at tube nose, it moves parallel to the walls of the tube with pressure P and
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velocity € almost equal to those of the main stream, A manometer connected to the
holes at location (3) measures the static pressure at that location.

manometer fluid

Fig. 3.10 Pitot static tube

A differential manometer connected to holes (2) and (3) measures the difference
between P and P representing the dynamic pressure of the flow, which is given by
Eq. (3.62). Thus

Z
LAY L =
. ke B =P gh [ o g

{3.03a}
where o is the density of the manometer liquid, Equation {3.63a) can also give the
velocity C in the form

W ooy 1 pets e
¢ =/ 2h = - 1) (3.63b)

EXAMPLE 3.15 P
A pitot tube is used to measure the velocity of a stream of il of specific gravity

0.9, If the attached differential water manometer shows a reading of 30 cm, what is
the velocity of the oil?

Problem Description
ol

_——
——
—_—

witer
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Data of the Problem
*flowofoil,p =090,
* manometer fluid is water, Pm = Py = 1000 kg/ m?
*h = 0.3m of water

Requirements
* velocity of ail, C

Solution
Applving Eq. (3.63b) vields

fzgh {;_m__L} = ¢ 2 w8,8 x0.3 =« [éﬁ - ].]

.81 mfs

i
1]

PROBLEMS ON CHAPTER THREE

Problems on Section 3—1t0 3—4

- 3.1. The velocity field in a non-viscous fluid flow is given by
U=¥e+ 1,V =%XF—1,w =Xy
{ 1) Find the acceleration components of a fluid element in terms of x,v,z and t.
(ii ) Find the total velocity and total acceleration of a fuid element at a point
with coordinate (2,1,2) at the end of the first unit of time,
(iii) Is the flow irrotational?

3.2. The velocity distribution of a turbulent flow inside a circular pipe is given in
terms of centerline velocity C__ ., the pipe radius R, and the distance from the cen-
terline r as follows
1
fn

)

falilg

[
Fid e = |:'_|_
t;mx
where n is a constant that depends on the flow Reynolds number. Express the
volume flow rate in the pipe in terms of n, Crnax a#nd R,

3.3. A water channel of width 2b and depth H. If the velocity of water (m/s) at
any localion is given as follows

=i 0E-1% (1 -

| £

)

where y and z are the horizontal distances from the wall and the warer depth from the
surface respectively. Find the expression for the mass flow rate in the channel. Fora
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channel with width of 50 m and depth of 10 m determine the value of the mass flow
rate.

3.4, In Fig. (3.11), water flows in a pipeline reducer at rate of 3000 kg/s. Caleu-
late the mean velocity in the 300 mm and 200 mm pipes.

: .i 200

| mrm

3m| g
|~

Fig. 3.11

Problems on Section 3-5

3.5, Water flows in a pipe of inlet and exit cross sectional areas of 0.3 m2and 0,15
m? respectively. The velocity of water at the inlet is 1.8 m/s. If the velocity is
assumed uniform and normal to the pipe cross section, find the velocity of the water
at the pipe exit.

3.6, Aidr flows steadily through a compressor at the rate of 50 kg/min entering
with a pressure of 100 kN/m? and temperature 20°C and leaving with a pressure of
900 kN/m? and a temperature of 200°C. The velocily in both the intake and delivery
pipes is at an average of 30 m/ss. Determine the diameters of intake and delivery
pipes (R, = 287 I/kg K).

3.7. The velocity of an incompressible fluid flow at the inlet of a triangular cross
section bend is constant, The dimensions of the cross section vary  between inlet
and exit as shown in Fig. (3.12). If the velocity distribution at the exit is lingar as
depicted from the figure, calculate the velocity at the inlet of the bend.

3.8, At the exit of an open rectangular channel bend the velocity at the water sur-
face varies linearly with the width from 4 m/s at one side to 1 m/s at the other side
and varies with the depth so that the magnitude at the free surface is twice that at the
base. The width of the channel is | m and the depth of water in the channel is 1.5m.
Calculate the mass flow rate in the channel.

3.9. A rigid vessel containing 2 m? of a perfect gas at a pressure of 80 kN/m? is
connected to a pump which extracts the gas at a constant rate of .2 m3/min, dis-
charging it to atmosphere. The temperature of the gas in the vessel may be assumed
to remain constant during the pumping process, Find the time taken 1o reduce the
pressure in the vessel to 13 kN/m2,
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{exit cross section)
equiangular triangular

; i
{inlet cross section)
0.8 [m equiangular trizngular
|
i e

Fig. 3.12

3.10. The following are two velocity components for incompressible flow. Find
the third velocity component and determine in each case whether the flow is rota-
tional or not.

alu=x2 4 y2 427, v = —xy —¥yz —xz
biu=In(?+ 28, v = sin(x2 + 29)

Ju=x+y+z,v=ux+ y + 22

3.11. In Fig. (3.13), water issues upward from a nozzle at the center of a cylin-
drical cavity with dimensions as indicated on the figure. The velocity distribution al
the nozzle is given as follows

C=10{1-{ X P I ms
Ry
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where y is the radius from the centerline of the nozzle, Ry, is the radius of the nozzle,
Calculate the average velocity at the exit from the annular space.

3.12. In the device shown in Fig. (3.14) calculate C, if the flow is incompressible
and steady,

Cylindrical DA =01m
: Cavity 1 Cy = 10 mfs
IR=03m’ gz:ﬂfm?.m. 1 d
— ; = 5 mis &, ] 300 } =
. ; i A4=0.12m3
1 [ — H"‘CJ =32
“f-""’“*l_ ey —
i T' 3
3 i £ 3 ] Ay =02 m?
annular "Dy = 5cm Cy; =15 mfs
space
{2 cm)
Fig. 3.13 Fig. 3.14

3.13. In an automobile factory, an air compressor of a rated output about 20 kg/s
is used to blow tires to a gauge pressure of 2 atmosphere. Calculate the number of
tires per hour to be blown by the compressor.  You may assume that each tire has a
constant volume of 0.05 m?® during the blowing process which is assumed iso-
thermal. Consider air as a perfect gas (R = 287 J/kg N), and the atmospheric con-
ditions as P= 10° N/m? and T = 30°C.

3.14. Derive the continuity equation for a cylindrical infinitesimal control volume
{cylindrical coordinates).

3.15. In a compressible unidirectional steady flow, the velocity component in the
direction x is given by
u=5+4xly + z2
Determine the density distribution in the field.

3.16. A water tank of cross sectional area A is used to supply water to a four sto-
ries building at an average rate of m ke/s. The tank has a hole where water leaks at a
rate A kg/s which is proportional to  the square root of the water height in the
tank. The tank has a float that operates a pump to feed water to the tank when the
water height inside the tank becomes lower than H y meter, The float shuts the pump
off when the water height exceeds H, meter, If the pump supplies water at a cons-
tant rate of M kg/s which is larger than (h + & ), calculate the operation time for
the pump and the time interval between operation.

.17, Calculate the mass flow rate of exhaust gases from a car that consumes
about 5 kg/hr of fuel if the airfuel ratio is about 15:1.
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118, A section of pipe carrving water contains an expansion chamber with a free
surface whose area is 2 m? {Fig. 3.15). The inlet and outlet pipes are both | m?2 in
area. Al a given instant, the averape velocity at section 1 is 3 m/s into the chamber.
Water flows out at section 2 with an average velocity of 4 m/s. Find the rate of
change of free surface level at the given instant in m/s. Indicate whether the level
rises or falls.

free surface
s

'

/ CxpNSon

=

- = chamber
.-
AT 5 -
@ @
Fig 3.15

3.19, In ancient Egypt, circular vessels filled with water sometimes were used as
crude clocks. The vessels were shaped in such a way that, as water drained from the
bottom, the surface level dropped at a constant rate h. Assume that water drains
from a hole of area A, The water speed leaving the vessel Is approximated by
=/2gh, where h is the height of the liquid free surface above the jet exit, Find an
expression for the radius of the vessel, r, as a function of the height, h, Determine
the volume of water needed so that the clock will operate for n hours.

Problems on Section 3—6

3.20. Calculate the force required to hold a garden hose of nozzle with area ratio
2:1 and with inlet diameter of § cm, The water pressure at the inlet 15 2 x 10°N/m?
at mass flow rate of 15 kg/s.

3.21. A tower is to be built near the shore of a sea. The construction is expected to
extend to about 5 meters under the water surface and 15 meters above it. The velo-
city of the water at the tower location changes linearly with the depth z from the
surface according to the relation.

C=15-035zm's
where z in meters. If the tower has a square cross section with side length of 4
meters, determine the maximum force on any of the side walls of the tower and ils
acting centre,

1.22. The velocity of air at the inlet and outlet of a trigngular bend is as shown in
Fig. (3.16). Calculate the force exerted on the bend. Neglect the weight of air in the
bend and assume incompressible flow with density p = 1.25 ke/m?.
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3.23. The pressure distribution of an inviscid flow in a gravitational field is given
as follows
p=3xiyt 4+ dy + 52
calculate the components of the instantaneous local acceleration in the directions X,
¥ and z.

3.24, Determine the external force (per unit mass of the fluid) acting on a steady
incompressible flow with the following characteristics
u=14+9%,v=w=on
P=p(2x +vy+ 9.8)
where ¢ is the fluid density,

Problems on Scction 3—7

3.23. Which of the following motions are kinematically possible for a steady
incompressible flow? For possible motions determine whether or not Bernoullis
equation can be applied.

kx v
kx v

a) u -k
by u . 5

-ky i

-

kx
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{c) u = kx v = ~ky W o= kz
{d)  u = kx = ky vo= kt
fe)  u = kx v = ky wos -2kz
(£ u = —-.iaﬁj— ¥ o ky - wo= 0

(x” + ¥ [(x“ + ¥v*)

3.26. A round water tank (D = 1 m) contains water to a height of 5 m from its
base. The tank is open to the atmosphere. Calculate the time required to drain the
tank through 2 cm hole in its base,

3.27. Water flows vertically downward from a tap into the atmosphere. If the
stream diameter and its velocity at the tap outlet are 15 mm and .3 m/s respecti-
vely, determine the velocity and the stream diameter at 0.6m below the tap.

3.28. A 20 cm water pipe has in it a venturi meter of throat diameter 12.5 cm,
which is connected to a mercury manometer showing a difference of 87.8 cm. Find
the velocity in the throat and the discharge, If the upstream pressure is 690 kN/m?2,
what power would be given up by the water if it was allowed 1o discharge to atmos-
pheric pressure.

3.29. Find the time to empty a tank 6m? cross-sectional area and 2 m deep
through & 20cm diameter flared orifice which is 1 m below the tank bottom. Con-
sider the orifice to have a coelTicient of discharge equal o 0.62.

3.30. A vertical pipe 300 mm diameter conveys water at rates up to 100 kz/s. The
flow is metered by a venturi, the pressure difference between the inlet and the throat
being measured by a U-tube containing mercury. If the maximum manometer rea-
ding is not to exceed 600 mm mercury, determine the minimum permissible throat
diameter of the venturi. Assume the venturi to have a coefficient of discharge
Cy=0.97.

3,31, An aerofoil is 30 shaped that the velocities along the upper angd lower sur-
faces are respectively 25 percent greater than, and 25 percent smaller than, the velo-
city of the oncoming stream. What is the lift force on such a wing, 15 m long and 3
m chord, at 320 km/hr.

3.32. Air flowssteadily from a large pipe to atmosphere through a 50 mm dia-
meter nozzle, Velocity of air in the large pipe is negligible, Atmospheric pressure is
100 kN/m? and the pressure in the large pipe is 150 kN/m? absolute. Atmospheric
temperature is 17°C, and the relationship between pressure and densily everywhere
in the flow is P/pl.4 = constant. Considering air as an ideal gas of which R =0.287
kl/kg K, determine the mass flow rate through the nozzle.

3.33. Water coming from a single reservoir flows first in a main pipe which bran-
ches after that to two pipes in a vertical plane. Water discharges into atmosphere at
a velocity of 3.5 m/s from one branch at a point 2 m higher than the centreline of
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the main pipe, and from the other branch at some unknown velocity but at a point
3.5m lower than the centre line of the main pipe. Each pipe has a cross-sectional
area of 0.1 m2. Assuming ideal flow, find the pressure and the volume flow rate in
the main pipe.

Problems on Section 3 —38

3.34. The velocity components of an incompressible flow field are given as fol-
lows
u =yt , v = XZt , W = Xy
Find the expression for the pressure at any point in terms of x, ¥, zandt,

Problems on Section 3—9

3.35.Find the force exerted on a fixed vane when a jet of water with discharging
rate of 0.2 m?/s at speed of 50 m/s is reflected through 135° angle.

3.36. A waler jet having a mass flow rate 100 kg/s at a velocity 30 m/s strikes a
vane moving at a velocity of 10 m/s. The vane has a reflection angle of 60°. Deter-
mine the power transmitted to the vane and the absolute velocity leaving the vane.

3.37. Determine the horse power per vane that can be obtained from a series of
vanes curved through 170° moving with velocity 60 m/s. Draw the polar diagram
and calculate the energy remaining in the jet. Also, verify the energy balance on the
jet. Mate that the water jet comes tangential to the vane inlet and its velocity and
cross sectional area are 120 m/s and 0,002 m?, respectively.

3.38. A jet of il (sp. gr. 0.8) flowing at a rate of 20 liters/min from a nozzle of
2.5 cm diameter impinges on a plate inclined at 60° to horizontal, What is the force
acting on the plate and what are the flows along the surface of the plate.

(zeneral Problems on Chapter 3

3.3%. Warer flows from a constant head tank through an orifice on its base of
diameter d =0.05 m.The jet from the orifice impinges on a horizontal plate at about
0.5m below the orifice, as shown in Fig. (3.17). Find the magnitude and direction of
the net force exerted by the jet on the plate,

3.40. A liquid jet is issuing upward against a flat board of weight W and suppor-
ting it as indicated in Fig. (3.18). Determine the equilibrium height of the board
above the nozzle cxit as a function of nozzle area and the nozzle exit velocity.

3.41. A pitot-stalic tube is carefully aligned with an air stream of density
1.23kg/m?. If the attached differential manometer shows a reading of 150 mm of
water, what is the velocity of the air stream?

3.42, Water flows under a sluice gate on a horizontal bed at the inlet to a flume.
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Above the gate, the water level is 50 cm and the velocity is negligible. At the vena
contracta below the gate, the flow stream lines are straight and the depth is 5 em. A
uniform flow and a negligible friction may be assumed. Determine the flow velocity
downstreamn from the gate and the discharge per meter of width.

3.43. A stand-pipe filled with fluid has openings at the quarter lengths, as shown
in Fig. (3.19). Assuming that the fluid level remains constant, calculate the points at
which the jets of fluid will strike the ground at the level of the base of the stand pipe.

P
f _53 SELST &
hia | '
{ _}_r:_.., . Water
hid4
R o S 5 m
hi4 B
.fm_':_... ;
b4 | LB
| ) ———d=2cm
1
N.3m
.“'—‘J
Fig. 3.19 Fig. 3.20

3.44. Determing the time required to empty the tank having a conical shape as
indicated in Fig. (3.20).

3.45. A water jel issues from a nozele (2.5 ¢m in diameter) at a rate of 0.2
m?/min. The jet impinges on a curved vane with an exit angle of 45°. A force
transducer measures the reaction foree which is found to be 30 N in the direction of
the jet. Determine the absolute velocity of the vane,
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CHAPTER FOUR
VISCOUS FLOW

4 -1~ Introduction

In the previous chapter it was assumed that the fluid is ideal, i.e. there is no
internal friction between the flowing fluid lavers and when this fluid flows over a
solid wall no fluid particles adhere to the wall. The assumption of ideal fluid is used
to simplify the governing equations of the fluid flow. This has proved to be useful in
many practical applications. A wide range of practical problems in fluid mechanics
seems Lo be better explained if the concept of real fluid is introduced. A real fluid
has the following two important characteristics. First it deforms continuously under
the application of any shearing force. Second, flowing particles of such a fluid
would adhere to any adjacent wall. This characteristic is known as the no-slip con-
dition. Both characteristics are related to what is called the viscosity of the fluid. An
ideal flow, therefore, assumes zero viscosity.

moving plate

: T
stationary plate

A B

Fig. 4.1 Motion of fluid between two plates
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In Fig. (4.1}, AR represents a fixed plane and CD a parallel plane al a distance h
from AB, The space between the planes is [lled with a fluid and the upper plane CD
moves uniformly with velocity U parallel to plane AB. According to the no shp
condition the fluid particles adjacent to plane AB have rero velocity while those
adjacent to the plane CD move with velocity U, Fluid particles between the fwo
planes have velocities that range from zero to UL This gradual change of the velocity
of the fluid particles is caused by the viscosity of the fluid which iz a measure of the
internal friction between the fluid layers.

At sleady stale conditions it is found that there is a shearing stress 7 at any
fluid laver and its magnitude 15 proporiional (o the velocity gradient across the
layer, thal is

v ;} (4.1)
or
c=w A8 (4.2)

where g is a proportionality constant known as the coefficient of viscosity, the
dynarmic viscosity or simply the viscosity. A fluid for which the coefficient of visco-
sity does not depend on the shear ar the velocity gradient is known as Newtonian
fluid,

Experiment shows that the viscosity of a given fluid depends in general on its
temperature and pressure, The viscosity of liquids usually decreases with rise of
temperature and is nearly independent of pressure for pressures not exceeding a few
atmospheres. The viscosity of gases increases with rise of temperature and is inde-
pendent of pressure, except when the latter is very high.

The SI unit of the dynamic viscosity g is the Pascal. second (Pa. s). The ratio of
the dynamic viscosity g Lo the fluid density p is known as the kinematic viscosity v
and its ST unit is m2/5.

The shear stress = in Eq. (4.2) is defined as the shear force divided by the arca
parallel to the force. This shear stress = is positive if it acts on a positive area and it
is negative if it acts on a negative area. An area is considered positive if the normal
out from it is positive.

4 -2~ Laminar and Turbulent Flows

Viscous flow patterns are classified according Lo their internal structure to either
laminar or turbulent flow, Laminar flow is the kind where the fluid flows in laminae
ar layers. Turbulent flow is a random motion. Unlike laminar flow, turbulent flow
invariably has three-dimensional vorticity fluctuations. This property makes the
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diffusivity of matter in turbulent flow much higher than that of laminar flow. This
causes rapid mixing in turbulent flow as compared to the mixing in laminar flow.
For example when dye is injected in a laminar flow, the dye colours a streamline and
remains as an identifiable layer for a while, whereas in case of turbulent flow the dye
is quickly tangled colouring the whole flow. The determination of whether the flow
is laminar or turbulent depends on many factors among which is the value of the
Reynolds number”. Turbulent flow always occurs at high Reynolds number relative
to that of laminar flow. The value of the critical Reynolds number at which transi-
tion takes place from laminar to turbulent depends on the configuration of the flow.
For example the critical Reynolds number for a flow in a pipe is equal to 2300 while
that for a flow over a flat plate is about 3.2 = 105

4—3 — Boundary Layer Concepi

When a flow of uniform velocity flows over a solid surface, such as a flat plate,
the fluid particles in contact with the surface remain at zero velocity due to the no
slip condition at the wall. Ahead of the leading edge of a plate the flow comes with a
uniform velocity U, (see Fig. 4.2) and the layer adjacent to the plate is suddenly
brought to rest. The change in the velocity of fluid from U, tozero at the leading
edge occurs abruptly. The thickness of the fluid laver over which this change of
velocity takes place is zero. By flowing further down stream on the plate more fluid
particles that become adjacent Lo the plate are brought to rzera velocity. Because of
the internal friction of fluid, the retardation effect initiated at the wall penetrates to
the other layers of the flow causing a gradual change of velocity from zero to U,
The region of the flow where this velocity gradient occurs is called the boundary
layer. The flow inside the boundary layer having a distinct velocity gradient due to
viscosity is called viscous flow, while the flow outside the houndary laver having
nearly a constant velocity of U, that is not affected by viscasity may be treated as
non-viscous flow,

The thickness & of the boundary layer is defined as the normal distance to the
surface at which the flow velocity becomes about 99% of that of the main flow. In
Fig. (4.2) the velocity profiles at three different stations across the bourndary layer are
illustrated. In each profile the boundary laver thickness & is indicated. Another basic
boundary layer thickness is the displacement thickness d4 (see Fig. 4.3) which refers
to the displacement of the main flow due to slowing down of fluid particles in the
boundary layer zone, Referring to the figure the quantity of mass flow displaced as
a result of the existence of the boundary layer is

FolUa —u) dy
o

(*} Revnolds number iz a non-dimensional parameter relating viscosity p, density @ . velocity C and a
characteristic length of flow L so that Re = 2CLA
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Fig. 4.3 Velocity profile invide boundary layer

Such quantity, of thickness 4, is displaced to the main flow where the velocity is U,

thus

wug.csd

]

I FJ':UM - 13 d.y

o

The above equation gives the definition of the displacement thickness d; and for

incompressible flow it gives

drje

[ QLS T

G oo

1

= ) ay (4.3)

A third boundary layer thickness that is known as the momentum thickness, . is

defined as follows

O
]
ey O

- g ) (4.4)

EXAMPLE 4.1

Find the relation between the displacement thickness &, and boundary layer
thickness & of an incompressible flow over @ flat plate if the velocity distribution
inside the boundary layer is given by the following expression
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where U is the velocity far from the plate and v is the normal distance measured
from the plate.

Problem Description

b e e R Y S T T e X

Data of the Problem
* Incompressible flow over a flat plate
* Configuration as given in Problem Description

Requirement
* The relation between d4 and &

Solution
From Eq. {4.3) one may write

G
A -,
[ = | {1 -=74d
a % 0 ¥
i
3. 1 w3
= f dl == w e x0T dy
"0 Ttk 2 2 3
_ 2 2 1ol &
T Gl - -l T
o o
3 1 3
o, e = d= =
] 1,"-“4‘8& i;.':
1.8,
3
il

145



Fig. 4.4 Boundary layer flow over a flat plate

4—4~ Boundary Layer Over a Flat Plate

Consider a flat plate set in a parallel incompressible flow of constant velocity U,
in the direction of the plate. Let x be the coordinate along the plate and v is the
coordinate perpendicular Lo the plate as shown in Fig. (4.4). Also, let I—1I be a sec-
tion taken at the leading edge of the plate, while I—1I is another section at a dis-
tance x from the leading edge where the boundary layer thickness is &, Assuming a

unit width for the plate, then the mass flow rates through {ab) and {cd), respectively,
are

g LI R (4.5
a]?l.b (8] Lm '5 }
and &
S e 2k L
ol SR (4.6)
Applying the conservation of mass on the control volume (abed) gives
pe T afy =
or
R, = p L U u ) ay (4.7)

Also, applying the momentum principle in direction x on the control volume (abed)
gives

® w, 0 ®x,1 (4.3:'
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The values of the individual terms of Eqg

%
Ecx="élw,d\
Gx,l 7t Gx,ab o Ugd
Se,0 © Gx,bc e Gx,cc
6
=p [ (U, =u) dy

Therefore Eq. (4.8) becomes
x &
s 5 = ; TR | R —— ]
J L BT pU { (o, - u)dy
ar

X g
fru o de=p S u U, -u
oW 0

The above equation may be rewritten as

du 2 4 u
I = i1 fra i80S I ot
17 Pl 3% t
¥=0
Now assume thal
B = T
et F im
where
w2
fl 3
Then, Eq. (4.13) becomes
u o aF ad }a
P oap| Telagp T

Alsp, assume

. (4.8) are

&

follows
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3 Ii:'!I -
Filss (4.17)

which satisfies the boundary conditions u=0 at y=0 and u=U_, at y=4. There-
fore, substitution of Eq. (4.17) in Eq. (4.16) gives

i 3 3
3 i a8 L 3 n 3 i
g Coa sy T 1o e Liyay
i il SRRl G I b S v
2 H = 4oy G
2 iy 1324 ax
1.2
odd = 10768 5—_[;__-:_.‘ dx

] ®
fEdé = 10,7681 = f gx
5 ol .
o wr
ar
.t2
-5 - T —
x2 ..::-;[.c'=
o
8 oo _A.B4
= /T {4.18)

where Re, is the Revnolds number of the ree stream based on Lhe distance x. Equa-
tion (4.18) applies for laminar flow only. For turbulent flow the experiments showed
that.

e (4.19)

w I
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Sy 2= BE
4 ot n=0
o B "Re,
L T 164 x
or
1 2
T = 5 e L
wi gy w Rl (4.204)
where
o . D.646
3 e (4.20b)

The parameter C; is known as the skin friction coefficient. [ntegrating Bg. (4.20a)
over the length L of the plate, the mean shear stress, ©__ . then becomes
WA

T = = & ax
z W L :J bl
o5 BkE
= G J 1o { :]?-[J B ¥ oodx
2 g YRe %
X
.22 1 2
- L& Lol (4.21a)
+ Re

More accurate velocity distribution than the one given by Eq. (4.17) showed that for
laminar flow, the mean shear stress is given by

1'3E [ 1E 7 ,_,i ) (4.21b)
T 7
or

o 1

-.w = “n { 3 o i 3 ]
1.328 |

O, =

D Fa y (4.22)
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In the previous section analysizs was carried out for laminar flow to predict the
variation of the boundary layer thickness with the distance along the plate and to
predict the local shear stress and the average shear stress on a plate of length L.
Similar analyvsis can not be performed For transition and turbulent flows. Instead,
one may rely on experimental results which gave the following correlations (Ref:
Schlichting, 1968, p. 601).

7 ] n i 7
transition: C.o= @;T"?ST gl i PR - 1'4:}*:J~TDL % 10 (4-23]
i 1 RE L_." --L

turbulent: €, = SEpemk o, R 5020 (4.24)

where A is a constant having the following values

A= 1700 At ncL=Ex105 )
-
b= 3300 ak Ra = 10
3 3 L ) | (4.25)
A o= 8700 at Re. = 3 x 10° J
L
EXAMPLE 4.2

Wind is blowing with an average velocity of 60 km/hr over a flat plate. Caleulate
the boundary layver thickness at a point on the plate about 50 cm from the leading
edge. Note that for aic © = 1.23 kg/m? and ¢ = 18.76 = 10~ % Pa.s.

Problem Description

U, = a0 (ken'br

—_—
——— e
alr — | &
Y
- e | C T i i

. - _ H

x = 3llcm |

fe——————

Data of the Problem
* a5 shown in Problem Description
*Po = 123 kg/m?, g, = 18,76 % 1070 Pas

‘air

150



Requirements
® thickness of the boundary layver 4 at x = 0.5 m from the plate leading edge.

Solution
100 -
o 2o ity AEERH A m/s
U 6l % TEDD . L
1z 1.23 % 16. % 0.5
fg = Bla ¥ oo %
#* H 18.76 x 10
g i g
= B a6 % 0T 3 32w 10 i.2. turbulent flow
& _ 0.376
& (Re :D
b
0.376 x 0.5 = 0.0134 m
& = 5 0.7 gk

(5.46 = 107

[=2]
I

1.34 cm

4 —35— Litt and Drag Forees

I the previous section a drag coefficient was defined for flow over a flat plate.
This drag coefficient is used to determine the net force exerted by a flow parallel to a
flat plate. Generally speaking all bodies immersed in {luid flow are exposed o a
force due to both friction between flow and the surface and the pressure of the flow
on the surface of the body. This foree has two components: one eomponent is in the
direction of the motion and known as the drag force and the other component is
perpendicular to the motion and known as the lift foree, The drag force due to
friction is called the skin friction drag while the drag  foree due to pressure distri-
bution is called the pressure drag. When the flow is parallel to the surface of the
body the drag will be a skin friction drag only. In terms of the dynamic pressure of

the free stream (1/2 p UZ ) the drag and lift forces are respectively defined as fol-
lows

b 62 (4.26)

LT

L)
=

|
[}
1
=
rap
=]

o2 )

(4.27)
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Table 4.1 Drag coefficient (Cpy) For different geometries”

alds M Chaoradieristic | Characbensic
Object cp | R Lengih Area
Fiot Flate i
largentiol | 133 [Rel lamirat Flate
: il 3 i ek L st
% ] | oonmRel"®| Re <0’ orea
Flal Plate | Lid z B
(Mormal]l - 1 1AR Fe =¥
bl £ 12 Plaie
— 3 w13 d surfoce
F 20 15 ared
ol VN
sl 195
Cireuler Oisk
| Ml | | N
. 1147 Fe =10 [+]
— d
..... L
Sphere ?I.[ﬂell""z Re <1
O - 0.47 0P e Re< 35107 d Frojecled
—— di P i | =2 LT o T U Hrssa
A B 0.z He= 3 w109
H H
e mlwh_r“e 034 104 < R = 100
- & Projeclad
l:: — '_;_-__ _:___ £ area
e :; a_Tt 162 10 Re = 0"
Solid Hamis phere L
A 042 10" < Re <10®
i \].j _—————— - a PN_IE{-l-E'd
s — - area
- Ef);d,- 117 b < R 2ag®
Circular Cylinder Lid 4
1 DE3 10 2 e g™
5 B4 .
W 09 d Prajecled
20 0%3 area
o 10
ald e @ W2
Squore Cylinder
20 35 =0t d Frojecled
= ’ aren
4
A
Square cybinders
dad . 5 i
—,-L O 1.6 0% a0 d Projecled
R dd e
Sermhbaaicr Linfeete
length . |
- :) d| 23 box ot | a | Frojecied
aree
= C ':_'1 1z PR d Projecked
area

* With some modifications from: Hyges, W.F. and J.A. Brighton, Fluid Dyiamics,
Shaum’s Ouiline Series, MoGraw-Hill Book Company, 1967.
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where A is a characteristic area and C, and C; are called the drag and lift ¢coeffi-
cients respectively. The characteristic area A is commonly taken as the surface area
or the projected area normai to the flow direction. The values of Cp and € depend
on the geometry of the body, flow configuration and Reynolds number. Values of
the drag coefficient Cp, for different geometries are tabulated in Table (4.1).

EXAMPLE 4.3
The following objects are immersed in a steady incompressible flow continuum of

water of 20 cmn/s velocity and 20°C temperature:
a) flat plate parallel to flow with 50 cm length and 20 cm width,

b} flat plate normal to flow with 2 m height and 10 m width,

¢) sphere of diameter 5 e¢m, and
d) circular cylinder normal to the flow of 10 cm diameter and 150 cm length,

Determine the drag force for these objects.

Problem Description

U =02mis [at plate
3.:] e —— —— Wo= 1L2m
I 1-05m )_I
i
U= 0.2mfs 2 E
by @ — Z) =~ W= 10m
gl &
=
Ll &
U=02ms
C:I —_— d =5¢cm
S,
sphere
I = 0.2 ms
d) % = ¥ - d=I0em, L = 150 cm
cylinder



Data of the Problem
* Steady incompressible flow
* Water {at 20°C) flowing with velocity 0.2 m/s
* (Objects in the flow are as shown in Problem Description

Requirement
* Drag force on each of the objects
Solution

The density and dynamic viscosity of water at 20°C are delermined from Table
{4.2) as follows

—
1]

1001 }'U:_]',f"m3
10.046 x 107* stmz

=
]

In the following Table the drag force on each object is calculated by employing the
following '

B = &
ER- m

where ¥ is the characteristic length as indicated in Table 4.1. Also, A is the charac-
teristic area as indicated in Table 4.1,

The drag force, then becomes

case ocbject L Re A <, F,
flat plate 4| &x w= : -3 .
2 | itnagential) | 05 ™ |9-98X107 | 5732 4.21x15” | 0.00084 W
flat plate 5 | dx W=
k {normall 2m |3.98x10% | 54 12 1.2 480 MW
NEA 1 i
c sphere 0.05 m{9.96x10° | 7 0.47 0.0184 N
1.96%15°m°
a | @lnder |4, o]y 99.a0f = D.88 2.64 N
{normal) 0.15 a
. m
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4 —6— Fully Dieveloped Flow

[n section 4.4 boundary layer low over an external surface such as a flat plate was
considered. It was shown that the thickness of the boundary layer grows with the
distance down stream, If one now considers internal flow inside a conduit, such as a
pipe, the growth of the thickness of the boundary layer will of course be limited by
the dimensions of the conduit,

In Fig. (4.5) we consider internal flow in a conduit with characleristic cross sec-
tional dimension £ (for a pipe the diameter D). The flow approaches the conduit
with a velocity U,,. Because of the no slip condition at the walls of the conduit, a
boundary layer flow will be initiated at the entrance. As it is expected this boundary
layer will grow in thickness until it reaches ils possible maximum thickness at the
centerline of the conduit. The distance between the entrance and the point of
maximum thickness of the boundary layer is known as the entrance length, L, . This
entrance lengih depends on the nature of the flow as being laminar or turbulent. For
laminar flow, experiments showed that the relation for L, rakes the form

e
- & Re {4.28)

where Re is the Reynolds number  (Re= ':'—1-__3{} based on the average flow velocity
Cinside the conduit, )

In the entrance region, between sections [ and I the flow may be divided into two
regions: houndary layer flow (viscous flow) near the walls and potential flow {non-
viscous flow) otherwise. At every cross section between sections | and III the flow
velocity changes from a value of zero at the wall to its maximum value U bet-
weerl the edges of the boundary laver at the same cross section, The maximum wvelo-
city U . in the potential flow region increases with the distance downstream in
order to satisfy the continuity equation. This is illustrated by the velocity profiles
shown in Fig. (4.5). After the entrance region, i.e. after section III, the velocity pro-
file takes a constant shape that is independent of the distance down stream. The
flow after section T is known as fully developed flow (see Fig. 4.5).

In the following analysis fully developed laminar flow is to be considered in two
configurations, In the first configuration flow between two plates (with upper plate
moving) is analyzed. The second configuration is that of a fully developed flow
inside a pipe.

4 —6—1— Laminar flow between two parallel plates with upper plate moving at a
constant velocity

Consider the flow between two horizontal parallel infinite plates as shown in Fig.
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entrance flow region fully developed flow region
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=

velocity profiles at different sections

e
—
-

i
T Umﬂx |
— -
u

e

Um:u T8 B 5 Umax. T Umnx. 1 Um:u: = ern: S Umt- v = Ul"ﬂﬂx .

Fig. 4.5 Entrance and fully developed flow regions in a conduit

{4.6). The lower plate is stationary while the upper plate is moving horizontaly at a
canstant velocity U. The distance between the two plates is h, Assume:

T2ty
U By
mOving e T s 2
cantrol !.-;3 i
il T3 volume B P G Him gl
oy e L
':r Y I B
slatiunar}"m e --_t—

Fig. 4.6 Laminar fully developed flow between two plates

i) unidirectional flow, i.e. v=0 and w = 0; i) fully developed flow, i.e. u=u (¥); iii)
steady flow, i.e. all quantities are independant of time; and iv) incompressible flow,
i.e. p=constant. Let us now apply the momentum principle in the x — direction,

& =G .-G + EF, (4.29)

w0 i | W, 0
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on the infinitesmal control volume of unit width, The velocity u in the direction x at
a fixed distance y is constant for a fully developed laminar flow. Thus:

= i = = = 3 in
o £ouy dm, =R J u, di, {4.30)
A i
i (o]
i.e.
T s
(4.31)

By, =0 {4.32)
Therefore
s =0 (4.33)
s
f B =
] L G 5
- 2B gx ay + ET gy dx = 0 (4.34)
Qr
aT . EI 2
Ao EE (4.33)

Also, since the flow is in the x direction no shear stress exists in the ¥ direction, In
addition, a fully developed flow assumes that u=u (y) and the shear stress = for a
fluid with constant viscosity g becomes

¥ 3 (4.36)

,_,
Il
=

Bu
By

Substitution by Eq. (4.36) into Eq. (4.33) gives

U = =
PR EE% (4.37)
The above equation is integrated to the following

- L 8P L.
el G e {4.38)
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where a; and a, are the integration constants. They are determined from the boun-
dary conditions. The boundary conditions are

1
==}

at y. =10 1

at y =h = U @3
Therefore the values of a; and a, become
e H L 2Ry 3
' Tl E ‘5&
B (4.40)
and Eq. {(4.36) is rewitten as follows
2
]
a= vegye BBy gy (4.41)

The above equation estimates the velocity u in terms of the normal distance mea-
sured from the stationary plate (lower plate) v, the distance between the two plates
h, the pressure gradient along the channel /4% on the dynamic viscosity of the
fluid u. The velocity distributions between the two plates are plotted in Fig, (4.7) for
both positive and negative pressure gradients,

Fig. 4.7 Velocity distribution of laminar flow between two plates, upper plate is mov-
ing with velocity U and lower plate is stationary
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The velocity distribution between two stationary plates (l.e. U=0) can easily be
obtained from Eg. (4.41).

The shear stress t is determined by substituting for u from Eq. (4.41) into Eq.
{4.36). This yields

- h 2p i u
1_233‘[2% 1—]+"'h {(4.42)
The volume flow rate per unit width of the plate iz given as follows
g h b h 5.12 3 2
'-.F=J'uc!y=,|’UE|:ty+_|'=2—_E(L._'i]dy
o Boax 2 b
fat o o h
o
v g B R B 0y
2 2y Ax 3 2
Uh n®  ap
=7 " I (4.43)

The average velocity of the flow is calculated by dividing the volume flow rate by the
flow area, thus

- ik

£ . 2 02 B B 5B

SR 12u 3 (4.44)
The location of maximum velocity i determined by eguating i‘_"’ (i.e. shear
stress) to zero. This gives %

u _ h 3p

b =iy gl lR 2 g
i.e

max ] B Gpiix (4.45)

where v, is the distance from the stationary plate to the location of the maximum
velocity.
4—6—2— Laminar flow in a pipe

In the present subsection fully developed laminar flow in a pipe is considered. For
the pipe flow shown in Fig. (4.8) the following will be assumed:
1. unidirectional flow, i.e. one component velocity motion in x direction;
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2. fully developed, i.e. u=u (r);

3. steady flow, i.e. all quantities are independent of time;

4. axisymmetric flow, i.e. all quantities are symmetric around the cenierline
which means independent of the angle 8 around the centerline; and

3. incompressible flow, p = constant. :
Select the cylindrical control volume of length dx and thickness dr as illustrated in
the figure. The external forces are only the shear stress and the pressures, Since the
flow iz in the x direction only, no shear stress exists in the radial direction. Thus at
the inner surface of the contral volume the shear foree is 2medx 1 ani its direction

Irdn ¢ +% 2T rd=e ldr

AP - _— i
-*' *ETRL e . .-)- .-'-.-'/ T o] [ P pld
| /. : ZirdrP e e ZNrdrP +— 2rdr x
R -a“///"__}_t?df L //d;z::/fr . e B
.x_ -~ Ir df‘/./' A/ .
ol - LEEL B (28 13
* IMrdxT :
LA _ v
! Ex | J'—H-\_,— T T |
Pl i FaE EE
a. location of control volume b. external forces on the control velume

Fig. 4.8 Fully developed laminar [Tow in a pipe

is in the negative direction of x because the surface is nesative (i.e. the normal to the
surface is in the direction of r), On the other hand the force on the outer surface is
in the positive direction of x, The pressure forces on  the control volume can also
be determined as shown in Fig. (4.8). Applying the momentum principle in x
direction gives

+;‘,’—r (29 r 1) dxdr - -gx. { Znr p) drdx = 0
ar
a_ " p
TR Toax (4.40)
subsrituting by T=q 3-—? . the above equation becomes
]-tz'— (¥ du e @R
¥ o ax (4.47)
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3ince the left hand side of the above equation is a function of r only, the partial
derivatives can be made full, i.e.
d du

E':EEJ=I'

ln:

U
x

@l

Integration with respect to r yields

ap rzd-a Inr + a
B 1

1
42l (4.48)

2
where a; and a, are constants of integration. Two boundary conditions are neces-
sary 1o determine the values of a; and a;. These are

att = 0,u = finite

atr = R, u = 0(no slip condition) (4.49)

Substitution of Eqgs. (4.49) into (4.48) viclds the values of a, and a,. Therefore, Eq.
(448} becomes

a
o

T d r =
s E B - 5 (4.50)

The shear stress, therefore, becomes

dy
T = T
= L_ 3 -
' Zn ax (4.51)

The volume flow rate in the pipe is thus given by

2 R
" TR do
__ELI E fr".rl——zldr
o R

£ _ - aR 3p
¥ = gu ax
7 -_ TR ap
¥ By Ax (4.52)
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where the pressure is assumed to be linear. The average velocity u becomes

- v
TR Bu ax (4.53)

The maximum velocity, u is derived by equating du/dr to zero at the location of

maximum velocity, i.e.

max?

= 2r  4p 4 _
o | OBl (4.54)

a
= umax a X

[ du
dr =
This means that the maximum velocity oceurs at the center line of the pipe and thus
its value becomes
2

R ] -
Hoggem ow g .55 =24 (4.55)

where U is the average velocity given by Eq. (4.53).

EXAMPLE 4.4

Starting from the basic principles find the velocity profile of steady incompres-
sible flow between two concentric pipes of inner and outer radii of r; and r, respec-
tively, The inner pipe is fixed while the outer pipe rotates with a constant angular
velocity w.

Problem Description

Trdg
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Data of the Problem
* pwo concentric pipes inner radius = 1, outer radius = ry
# gutside pipe rotates with angular velocity w
* inner pipe is fixed

Beguirements
* the velocity profile between the two pipes

Solution
The flow is unidirectional, axisymetric, and fully developed. Applying the
momentumn principle in the 8 direction we get
EFa = Co - ﬁi Ci

But since rilj = IilD from conservation of mass and C; = C, for fully developed
flow, then

!w

T Ir =
Y (rr d 8)dr ]
ar
a .l
g buger) =¢
by integration twice we get
Erie allnr + az
Boundary conditions
at r =r, C =0
L= r2 Com wrz
Then
g =
ay 1n rl + az
wr, = a, in r, + a,
wr
ie. a; = 2
5B
In—
1
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and

Hagp o= P i ln =
2 1
ln—=
1
or r
w wr
C=—2{lnr—lnr]= 2 Yy i
1'2 1 r2 i
1n— 1n— 1
rl rl
wr
o= 3 In ;—
lnr—2 *
1
EXAMPLE 4.5

Air at 20°C and atmospheric pressure enters a 2.5 cm diameter pipe with a uni-
form velocity and a Reynolds number of 1000, Determine the decrease in pressure in
going from the entrance to 250 cm downstream from the entrance. The entrance
length
L, is given by LE} /a=(.0288 Re , where Re is the Reynolds number,

Problem Description

L LT T e LR A R eita TR g Wl pinh

¥

Data of the Problem
* air at 20°C, atmospheric pressure
*Re = 1000
*d = 25m
* L,}/dz 0.0288Re



Requirements
* P, — P, as shown in Problem Description

Solution

From Appendix F, for air at 20°C have
g = 1.21 kg/m3
o= 1.815 x 10-7 Ns/mZ

The value of the entrance length L.is

L. = 0.0288 x 1000 % 0.025 = 0.72 m

g B .u -5

g o 1000 x 1.815 x 1077 _ 4 o
=~ pd 1.21 x ©.0z8 ’ '

The flow between sections 1 and 3 is divided into two regions; an entrance region
(from 1 to 2) and a fully developed region (from 2 to 3). Since the flow inside the
core is non-viscous the application of Bernoulli's equation on the stream line coin-
ciding with the centerline of the pipe vields

- Y Y 2 2
Buimidges e uprsigh (1)

- R L B 92 0061 B e 05

The flow between 2 and 3 is fully developed, thus

_ 2
U=y = -R &p
b B dx
or )
ap . _ MUe oex1.@15x107x0.6
% 2 (0.0125) 2

- 0.558 (N/m2) /m

By inlegration between 2 and 3 yields

P 2

2 ~ Py =0.558 x 1.78 = 0,.993 N/m
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Then

D.653 + 0.992 = 1.645 mez

4—7— Energy Degradation on Hydraulic Flow

Consider the pipe flow shown in Fig. (4.9). The flow is incompressible, steady,
adiabatic and in a pravitational field with constanl acceleration. If the fluid was
non-viscous, Bernoulli’s equation (Eg. 3.45 or 3.46) states that the high grade

©0 , o

“J

s

a) ideal flow b} real flow ¢} real fow with work

Fig. 4.9 Energy consideration in an adiabtic pipe flow

energy per unit mass at any point on a streamline is constant. Thus applying Ber-
noull’s equation between points (A) and (B) gives

Z 2

P c &

A sk 5B B 4.56
5 + g ZA + 5 = 5 g 3+ 5 { }

Let us now consider the infinite stream tube connecting points A and B and
having cross sectional areas dA; and dA, with points A and B in the center of these
infinitesimal arcas, resprectively. Equation (4.56) can be rewritien as follows

2 2
P c _ c -
tD + gf + > } . dil = {ﬂ + g + 5 } . odm

n H
By integration over the area of each section we conclude that
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, P c®
¥ = pl:d.!al + S gE pCda, + I = . pCdh
B, F A - A 2 4
1 1 1
= g R Cdh, + f g pCda. + C—z
.El. it pidA, I g2 p 5 i 5 ;:.CdA2

where A, and A, are the flow arcas at sections (1} and (2}, respectively. The above
eguation can be integrated for constant pressure over the cross section and for no
variation in Z for each section to give.

P 3 P 3
1 1 Q 2 1 i
== 4 gl * ¥ S s w —=higln Froe I dn
o 1 Elnl i z hE o z Fa i i
1 il 2
or
_2 _2
F g P ol
1 1 _ 2 -2 4.57a
- + gzl + lfﬂl £ = 5 + gzz + 0.2 3 E ;I

whers f] and Ez are the mean velocity at secrions A ' and A, respectively and o is the
kinetic energy correction factor and defined as follows

j(_‘a. dn,
gt i
1

fyie T (4.57h)
A Ci

The value of ¢ is 1 for one dimensional MNow (e C s constant over the cross section
arca) but otherwise ¢ £ 1. If a real fluid is now considered, i.e. the effect of visco-
sity is introduced, Eq. {4.57) becomes incorrect. This is because some of the energy
at any point upstream such as point 1 is degraded” by the time the fluid reaches a
downstream point such as point 2 because of friction between the fluid and the wall
and between fluid layers. A correction for Eq. (4.57) vields

Py af e, Eg
ol e < Do sRl e B R B ST (4.58)

where Ep is the total degraded energy per unit mass because of friction, turbulence,
and/or other effects. The above equation is called the energy equation and it is
applied between two sections on the pipe. The velocities E; and Ez are the average
velocities on the pipe at sections 1 and 2 respectively. The energy equation can be
further generalized by considering Fig. (4.9c) where work W per unit mass is added
to or drawn from the flow between the two seclions, thus

(*} Degradation of energy means transformation of energy from the form af work energy such as poten-
tal enecgy, kinetic enerzy, flow energy, mechanical or electric work,.., etc 1o a non work form such as
keat, internal cnergy, or chemical energy. Energy degradation per unit weight is usually known as head
Tozs.
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B C B Eg
: e T M e 3 ==+ E 3
—= 4 gl + oy 5 +H =+ gly + ooy 3 E. (4.59)

The above equation states that for a control volume under steady [low conditions
the sum of energy input per unit mass is equal to the sum of the energy output per
unit mass. Equation {4.59) can only be applied to steady, incompressible and adia-
batic MTow.

The work W per unit mass is considered positive for a pump (work added to the
Tow) and negative in case of a turbine (work taken from the flow). The degraded
energy in such flows, invariably transforms to internal energy.

Energy degradation in hydraulic conduits may be divided into two parts:

i} energy degradation due to friction in fully developed flow in straight constant
cross section conduits usually known as major loss, E;, and

ii) Energy degradation due to any reason other than the above usually known as
minor loss B (e.g. contractions, enlargements, entrances, elbows, valves, exits, ..
ate.)

4—-7—1- Major loss
a. Laminar flow
Consider the fully developed laminar flow in straight pipe shown in Fig, (4.10)

where there is no change in potential energy and a mean velocily C is assumed at
every section. The energy equation can be written as follows

P S R A Ty zf.‘z.']zﬂf
r' ________ e L I
---—:--E Tw :-d-m--—
— h r | SO
P | % 4 I P
b - t z
i I
—= |I. |
I 1
—— ] E |
H SR ol IH
e T b S M L Lt SR |
A i "L B S G i A i A A A AT
L

Fig. 4.10° Fully developed laminar flow in a pipe
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P'I 1"‘2

T - 5 OB (4.60)
Substituting from Eq. {4.55b) into Eq. (4.60) where Py —P, = AP and L in Fig.

(4.2} is equal to x vields

E, = E_u‘;T’u (4.61)
J TpER

 Major losses are commonly expressed in terms of the kinetic energy of the fuid
(C2/2), thus E, may be expressed as

5 -2
£ UL C L =
E. = - - = f£. =, = (4.62)
4 Ddz C 2 d 2
where
G4y
£ = (4.63a)
pCd

is knowwn as friction factor, The quantity pCd/u is the Revnolds number, Rey, based
on the pipe diameter, The quantity L/d is a non-dimensional ratio representing the
geometry of the pipe. Equation (4.63a) can now be expressed as follows

=2
e

(4.63b)

)
]

The relation between the friction factor and the skin friction coefficient Cs"
defined by Eq. (4.20) is derived by applying the momentum pringiple in the x direc-
tion on the control volume of Fig. (4.8) which yields

74° =1, (raL) (4.64)

1

substituting for Ty from Eq. (4.20) where C replaces U and for (P, = P,) from
Egs. (4.60) gives

=2
=5 . . Lo I
“j = 4 f_f { q i = (465;'
By comparison with Eq. {4.62), we et
f=4C (4.66)
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Iy) Turbulent Flow

. For turbulent flow in pipes (i.e. Rey = 2300) experiments showed that Eq. (4.62)
15 valid but with f being a function of both Reynolds number Re and the relative
roughness e , i.e.

t ==F H ReEy 2 i {4'6?)

where £ is defined as the average roughness divided by the diameter of the tube,
Also, the value of the friction factor f is related to the skin friction coefficient C; by
the same equation for laminar flow, i.e. Eq. (4.66), where C; is determined as fol-
lows [ Ref.: Kay and Nedderman, 1977].

Table 4.2 Loss coefficients for pipe entrances””

ENTRANCE LOSS

TYPE "DIAGRAM COEFFICIENT K

..——El-l-ﬂ-l-l.

Reentrant —a .78
_W
EM

Square cdped i 0,34
Y E i

Slightly rounded  ——= b 0.2 - 0.25
IR
Well rounded , wwn 0.04

T

I

*Basedon E, = k (Ts2), where C is the mean velocity in the pipe,
+ /R 20,35

=3 Taken from: Fax, Roe and AT, McDonald, Introduction to Fluid Mechanics, John Wiley & Sons,
1978,
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Friction factor, §
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0025

Relabive roughness, i

002/

0015

0.01H
0.0 -1

aegie

e (,000,01

0.00s

1456 B g

2

3 454 8 ch 2

T 4%4 3 hﬂb

Reyncids number, fie

1 456 8 —ﬁu

T p— -
5= 0000001

.E,wfm 10*

ML= 0000005

Fig. 4.11 Friction factors for fully-developed flow in a circular pipes {Taken from:
Fox, RW. and A.T. McDonald, Introduction to Fluid Mechanics, John
Wiley & Sons, 1978.)
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%) Contraction | Expansion _
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Fig. 4.12 Loss coefficients for flow through sudden area changes (Taken from: Fox,
R.W, and A.T. McDonald, Introduction 1o Fluid Mechanics, John Wiley &
Sons, 1978).

Table 4,3 Equivalent lengths in pipe diameters {L D) for valves and Fittings™"

FITTING TYPE DESCRIPTION EQUIVALENT LENGTH
L /o
Globe Valwve Fully Open 1540
Gate valwve fully Open 13
3
2 fper 35
7 Open
1 a 160
5 dpen 185
% =1 900
Check Valwve 50=100
20% st4. Elbow a0
45° Std. Elbow 16
909 Elbow Long Radius 20
400 stroet Elbow 1]
450 street Elbow 25
il Flow throuoh run 29
Flow through branch 60
Return hend Close paltiarn S0
L 2 = S
E a
* Based on E . =E T Tr
** Taken from : Fox, R.W. and A.T. McDonald, Intrcduction

to Fluid Mechanics, John Wilevy & Sons, 1978,



=154

I:'f = 0,079 Re { 105?-‘ Re » 2300, smooth pipe}

1 . Re 5

eeselis 4 1-09}_D [ - 0.4 { Rg» 107 , smacth pipe)

#cf »’c_f

L= 4 logl 4 v 3ie 0t RS 1ol h pipe) 68
P lag, ot =2 . 4 = . ¥ery rough pipel) (4_ )
L

where e is the average roughness.

The value of the friction factor f defined by Eq. (4.67) was determined by L.F.
Moody and this relation is shown in Fig. (4.11).

4 ~7—2— Minor losses

Among these are the following: i) entrance loss, ii) bends and elbows loss, 111) exit
loss, iv) valves and fittings loss, and v) enlargments and contractions losses. These
losses are generally expressed in one of the fellowing two forms, depending on the
kind of loss

e ~x & (4.69)
n o
ar
f; g°
RERIG] B (4.69b)

where K is a constant known as loss coefficient, {L/d}), is an equivalent ratio of the
length to diameter ratio and f is the same friction factor caleulated for the major
loss. Values of K or {L/d), adopted for different kinds of minor lasses are given in
Tables (4.2) and (4.3} and in Fig. (4.12).

EXAMPLE 4.6

Determine the gauge pressure P, to produce a volume flow rate of ¥V =0.5 m¥/s
for the configuration shown in the Problem Deseription. Consider the following
properties for water: p = 1000 kg/m? and g = 0.001 Pa.s.

Problem Description
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globe valve (fully open)

constant
. e e o]

lexel: E=i=oss = /
&

Sthem well rounded/’/ 90° 51, elbow

v

{water) r

Om 10 m fate va!ve{zl apen)
d = 15em, oot
e=00n\y :
T ———+V = L3im¥s
S st alion = & m - _'_l {atmospherie
pressure)

Data of the Problem
* as shown in the Problem Description
* 0, = 1000 kg/m? |, 4, = 0.001 pa.s

Requirements
* Gauge pressure, P, .

Solution
Select points (1) at the constant level and (2) at exit to atmosphere, then applying
the energy equalion between (1) and (2) gives

p, &2 i o
e g%, = i g%, + E
o 2 1 o 2 2 o
or 2
g
Pla? 3 :‘gl l:zz = 2:l:I = DT * CED {.U

where P, = atmospheric pressure and ‘(Tl = 0. The value of Ez is calculated from
the volume flow Tate as

g, = SLAS 1—0'5'“7 = 28.3 m/s
T ‘_ Y
Ed 4{0,15,
But,
Bo = BEHEE
n 3 n



2
e
L "2 . . -
= (£ 7 7' B8t ¥ 2Falpow Eslobe wgatcII ,
2 2 C2 L o
e c ®
wopk & oeop —34-2f[?§} 7? + E:7§3 o
S in. 2 elb gobe
L el
+f i-EE-& <
gat
2
= c
o L L I :
=t 2 (L2 @ 4P 4 F K b
4 ¥ delb gleoh gat inlet
Cg 110 C%
= : i 601 + D.04 —
= f 'T'[ 515 2x30 4 5502+ 160] 5
2 .
o o
= 1303.3 £ -2 + 0.04 2 (11}
Also,
_ pCa 10°%88: 350415 © ¢ 5y w 16% & 3308
Resmmy 0,001 '
i.e. the flow is turbulent. Using Fig. (4.1) for £=0.002 then f = 0.0242, e,

b 1303.3 = 0.0242 %

12630.3 + 16.01

Therefore Eq. (1) becomes

C
=pg {2, = 2,] + o =

l.g 1

~10°

¥ 2.8 x 60 + 10

25,88 x 10° + 4 x 10

5 2

124.58 = 107 MN/m

12646.31 m /s

2
2

2

i

5

2

+ pE

D

2
o (28.3)

5 +

10

I R |

7

1.24 % 10° W/m

3

2

2 Z
(2B.31° | q.ne = (28.3)

® 12646.3
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EXAMPLE 4.7

Water flows from the pipe connected to the tank shown in the Problem Descrip-
tion. Assume a smooth pipe with well rounded entrance, determine the volume flow
rate in the pipe (z,, = 1073 Pa.s).

Problem Description

1
]

10 m | (.5 ¢cm

= =

L, .____E'_l_..__..__,_i
Data of the Problem

* water flowing from a constant level tank as shown in the Problem Description

Requirements
* volume flow rate from the tank

Solution
Apply the energy equation between points | and 2

P & = 5

?+931+T_=_T+‘322""T+Ea (I
Since Py = Py = P, and €| = 0, then

5

- % By =9 5y (IT)

The total friction loss can be expressed as follows
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E = £ (2) ?; b # R A E; )

o a 3 ent * 2 (11}
where K, is loss coefficient for entrance. Equation (1T} therefore becomes

5

= lelehiEm i ent 1 T 9E
or

2g 2y
R e (V)
1+£ I + Kent

The value of K, is determined from Table (4.2) as K, =0.04. Equation (IV) is a
non-linear algebraic equation in C. The value of f depends on the value of C. The
procedure to solve Eq. (IV) is a trial and error one, To start the solution an initial
guess is to be assumed for C. A good estimate for C might be slightly less than in the
pipe assuming non-viscous fow, Thus -

e = - = = 4 0
C, ¥2g ['Z-l 223 Yix9.8 x 10 14 mss
Then assume the initial guess for Ez Lo be 10mss, thus
p C, d 3 '
e 27 . 107 x 10 x 0.008 _ g .4

M lﬁ-j

i.e. the flow is turbulent. Using Moody chart, for smooth pipe the value of f is
(.0175. The L.H.5, of Eq. (I¥) becomes

g, -/

2 x 9.8 x 10
1 %+ 0.0175 %

—_— =

+ 0.04

3.25 mfs

0.008

of course the value for ?2 differs than the initial guess. A new trial will be done with
the new estimate of €, = 3.25. The process continues until the value of C, calcu-
lated from Eq. (IV) becomes almost like the initial guess to a certain accuracy. The
following tabulation summarizes this procedure.

Trial WHeo. 1 2 3 4q
62 , guess 10 ; 3.25 i 2.717 ; 2.702 :
Ra Bx10 2.6x10° | 2.17x10 2.15x10
£({from Moody chart) | 0.0175| 0.0255 | o.0258 0.0258
Ez, from Eg. (IV) 3,25 25717 2.702 2.702

I
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i.e, the value of Eg is 2.702 m/s. Therefore,

2,702 x % (0.008)°

o= - .!‘52

begdog i ¥ o

1]

-0.499 mafhr

4 —7 -3~ Losses in non-circular duets

If the duct carrving the flow has a non-circular cross section, Equation (4.62) can
still be used to estimate approximately the major loss of energy per unit mass, EJ-,
with the same expression for f as given by Eq. (4.63) for laminar flow but after
replacing the value of 64 by the constant B that depends on the geometry of the cross
section of the duct.

Table 4.4 Friction lactors for concentric annulus and rectangle laminar flow using
the cquation f — B/Re®

Annulus : Rectangle

ryand r; arcinner and dimensions 3 % b
outer radii respectively

]:'..L‘;"r2 2] a/b B
0.0001 71.78 0 296 .00
0.001 T74.68 1/20 B9.91
0.01 2 TR 1/10 34.68
0.05 B8R .27 1/8 82,34
0.10 89 .37 1/6 JB.B1
0.20 92,35 174 72.93
Q.40 94,71 275 65.47
0.60 95.59 1L/2 62.19
0.80 95.92 3/4 57.89
1.00 96.00 1 i ,al

* Taken from: Essentials of Engineering Fluid Mechanics, by R.M. Olson, p. 288, Fourth
Edition, Harper & How, Publishers, New York, 1980,
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Values of B for different geomelries are shown in Table (4.4), However, in case al
turbulent flow the value of f calculated from Eq. (4.67) for circular duct is possibly
used for noneircular ducts. In either case of laminar or turbulent flow the hydraulic
diameter dy, of the non-circular duct replaces the diameter d in caleulating E. from
Eq. (4.62} or in calculating the value of Reynolds number, The hvdraulic diameter is
defined as follows

4. = 4 Cross secticnal area of flow
h : watted perimeber

(4.70)

The wetted perimeter 1s taken as the length of the wall of the duct that is in contact

with the flow at any cross section. For example, for a circular duct of diamerer d we
can write

Ol
i
=
]
L =l
%]
i
O

-
=
[

while for a rectanzular duct of dimension & = b we zet

=5 a- b _2akb
RO ey TR

When the flow takes place in the annulus between two concentric pipes with inner
and outer diameters d; and d; respectively the hydraulic diameter becomes

= 1 3
dh—-'-lx = C'E_'dl
b [d_) +dJ‘J

Unfortunately, minor losses are not caleulaled in a simple way (via using dn) as
the major loss, Experimental data for each geometery of the cross scetion of the non
cireular ducts should be consulted in order to get a reasonable estimate for the
minar losses in these non-circular ducts.

EXAMPLE 4.8

Water flows in the annulus between two circular ducts of diameters 20 cm and 40
cm with an average velocity § m//s. Estimate the pressure drop per unit length of the
duct {take 0 = 1000 kg/m? and & = 0.001 Pa.3)

Problem Description



e E P o S at P

7

A i Y R S T A

water

L

Data of the Problem
* water flowing in the annulus shown above
*d =02,d; =04m,L=1m
D= 1000 kg/m?, g = 0.001 Pas
* T = 5m/s

Regquirement

Solution
Appling the energy equation between points (1) and {2) yields

Py By
? = T + ED (I}

Since only major loss encountered here, then Ep, = E, where E; is given by

h (i

The value of d; is given by Eq. (4.70) as follows

L 2 2
7 {dz_dl}

= = - = 0.4 - 0.2 = 0.2

The Reynolds number thus hecomes
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i.e, the flow is turbulent

Assuming a smooth duct,then using Moody chart the value of fis 0.0115. Equations

(I) and (II) are now combined to calculate (P; — P,j as follows
=2
- L c
BiemiBhumn oifungm 5
n
= 107 % 0.011% x Ql—z x %: 71B.73 P&

4—7—4— Energy and hydraulic gradients

If Eq. (4.59) is rewritien in the Fform

=2 ~2
B C " P C o4
1 1 W 2 2 el
—— q —— A — = — + — e X
odg Ml 2o g = * By 2g | (L)

where all terms now have the dimensions of length, the sum of the high grade energy
terms will represent the total high grade encrgy head and the degraded energy term
E /g represents the hydraulic head loss usually known as the head loss. Equation
(4.71} may be rewritten in the Following form

=
et
]

= C

+

123

+

|

+

=

n

|

+

]

1
\Q!m F5

" Hy (@.72)

al
wy
—
b3
0
s
=
Wl
Fed
%]

where HD=ng, is the head of a pump (positive) or a turbine (negative), and
Hy =E,/g is the head loss.

When the total high grade energy head is plotted with location it gives what is
known as the energy gradient. However, when the kinetic energy head (C ™ /2g) is
excluded from the total high grade cnergy head and the result is plotted with loca-
tion it gives what is usually known as the hydraulic gradient.

Consider for example the flow system shown in Fig. (4.13), The system consists of
constant level lunk, pipe A of diameter d,, pipe B of diameter dy; four 45° elbows, a
globe valve, and a pump. Applying Eq. (4.72) between locations (1) and (2) gives

— =7
B
—1 + & i Cl — 32_ + 7 & C_2 + H .
pg 133 " pg " "2 T zg t Hane (4.73)



where H, is the entrance loss. In the above equation C; = 0, and using gape pres-
sure Eq. (4.73) becomes
¥y e ;
2-1 = E + z 2 + Eq' + Hent

i.e. the energy at location (1) is only that of the potential energy, This means that the
fluid level in the tank represents the energy gradient line, and since 1 = 0,1t also
represents the hydraulic gradient line. At location (2) the total high grade energy
head is decreased by an amount of H, due to the entrance loss. At this location
some of the potential energy is transformed into kinetic energy. The hyvdraulic gra-
dient line at location (2) comes lower than the energy gradient line by E'?;,fzg, Where
Ez = EA is the mean velocily in pipe AL -

Similarly by applving Eq. (4.72) between every two successive points from point (2)
to point (15) and carrying out the necessary simplifications we get.

P F :
N (4.74)
pg G maj,2-3

P P

I | )
2~ pg T ‘eibow (432}
i) B

T pp—. 7 . K

= + 2y = i H:naji.,-i—E- (4.76)
P—E = E’E + z E3 H

ng pg ‘g elbouw (4.77)
T

pg og maj,6=7 {4.78)
B Py

g - E Hgl-:::-be ':‘J" -?9}
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where
H

maj,i—1]
elbow

Hﬁli}bt‘

Hoump
Car Cp

st 34
5g | maj.8-9
=2
e F1o s
A H == . + e
g pump o 29
Pl
g maj,0=11
;LY
& 2kE o
a9 e lhow
™
= E. + A H ;
¥ ST pd 13 ‘maj,l2=13
14

b TH o
po (=l

= H

maj,l4-13

is the major head loss in pipe A or B between points i and ]
is the head loss in the 45°% elbow

is the head loss in the globe valve

is the head added by the pump

are the mean velocities in pipes A and B respectively.
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PROBLEMS ON CHAPTER FOUR

Problems on Sections d=1 (o 4=1

4.1. Standard air | T'j = 1.46 x 10“5 m?-‘;S:, flows along a flat plate at a

velocity U, =7.5 m/s. Estimate the boundary laver thickness at 15 ¢m from the

leading edge,

4.2. Caleulate the boundary layer thickness of a flow of air over a flal plate at
distance of 0.5 m from the leading edge, The air has a uniform velocity equals to 2
m/s. Note that: g, = 18.76 x 10-5Pas, 0 = 1.23 kg/m?, and Re, .., = 3.2
w105,

4.3, Water at 20°C flows over a flat plate aligned with the flow. If the uniform
velocity of the water outside the boundary layer is 1 m/s, determine the distance
along the plate at which transition ocours,

4.4, Repeat the previous problem for
a) Benzene at 20°C
b) Air at 20°C

4.5, An aeroplane is moving at a velocity of 100 km/hr for take-off. The wing of
the acroplane has a dimension of 2 m long and 15 m width. Assuming the wing to be
a flat plate and that surrounding air is at 20°C and atmospheric pressure, calculate
the boundary layer thickness at the trailing edge of the wing,

4.6. Find the relation between the ratio 4/x and the local Revnolds number
along a flat plate for the following velocity profile in a laminar boundary laver over
a plaie

L
b
(%)

]

(&) =

] =

T

where ¥ is the diatance from the plate and x is the distance along the plate.

4.7. Air at 20°C and atmospheric pressure flows over a flat plate at velocity
U =8 m/s, Caleulate the boundary laver thickness at 2, 10, and 20cm from the
leading edze,

4.8. The velocity profile in the boundary laver of a two dimensional laminar flow
along a flat plate is assumed as follows



Find the expressions for
a) the growth of the boundary layver thickness as a function of x.
b) the displacement thickness as a function of x.

Problems on Section 4=5

4.9, Calculate the drag force on a sphere of diameter 2 cm. The sphere is placed in
a stream of air of uniform velocity of 30 m/s. The air has a density and a viscosity of
1.23 kg/m? and 10~ % Pa.s, respectively. You may take the drag coefficient as 1.2
based on the projected area of the sphere in direction of flow.

4,10, A 6 mm diameter cylinder of 10 mm length is used as a pitot cylinder to
measure the velocity distribution in a water tunnel. If the velocity at a given test sec-
tion is very nearly uniform and equal to 15 m/s, estimate the drag force on the
cylinder. :

4,11, Water at 20°C flows at a uniform velocity over a 15 cm sphere. What is the
velocity of the water that gives a drag of 10 N on the sphere.

4.12_ In the previouws problem if the sphere is replaced by a cylinder of 15 cm
diameter and 20 ¢m length caleulate the drag force on the cylinder.

)

4,13, Calculate the number of parachutes, sach 30 m diameter, that should be
used to drop a load of 50 kN at a terminal speed of 10 m/s through air ar 20°C and
100 kPa abs. Take Cp, of the parachute as 1.2, based on the projected area normal
to motion,

4.14. A body of a mass about 200 kg is dropped from an aeroplane afler alta-
ching it to a disc of diameter d to limit the terminat velocily Lo 12 m/s. Assuming the
disc is made of light material of negligible weight as compared to the body, calculate
the diameter of the disc if air is assumed to be at 20°C and 10° Pa abs.

4.15. Compare the drag lorces for the following objects when placed in a flow of
air at 20°C and 100 kPa abs, of velocity 100 km/hr,
a) hollow hemisphere, d = I m
b) solid hemisphere, d = 1 m
¢) circular cylinder normal to flow, d = 1 m, L = 0.5 m.

4.16. Calculate the aerodynamic force (drag force) of wind blowing on a chimeny
of 1.5 m diameter and 10 m height. Take the wind speed as 30 kms/hr and the air
conditions as 30°C and 100 kPa abs,

4,17 Repeat Lthe previows problem for a similar chimeny with squar cross section
of 1.5 m side.

Problems on Section d-6

4_18. Find the velocity distribution for a flow between two vertical plates whers
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one of the plates 1s fixed and the other is moving with a velocity U,- You may
assume laminar, incompressible, steady, fully developed flow,

419, Find the velocity distribution for a flow in the annulus between two con-
centric pipes with their centerline making an angle 8 with the horizontal plane. The
inner pipe moves with velocity U while the center pipe is fixed. Assume laminar,
incompressible, steady, fully developed flow,

4.20. Consider fully-developed laminar flow in the annulus between bwo concen-
tric pipes. The inner pipe is stationary, and the outer pipe moves in the <-direction
with velocity V. Assume the axial pressure gradient to be zero f,d]afdx = 0 j,obtain
the velocity  distribution in the annulus.

4.21. A sealed journal bearing is formed from concentric cyvlinders, The inner and
outer radii are 2.5 and 2.6 cm, respectively, The journal length is 10 cm and it turns
at 240 rpm. The gap is filled with oil in laminar motion. The velocity profile is linear
across the gap. The torque needed to run the journal is 2 em-kegfl. Calculate the vis-
cosity of the oil. Will the torque increase or decrease with time? why?

Problems on Section 47

4.22. Water (v =1.14 % 10~ %m2/3) flows in a 15-cm pipe at a rate of 90 L/s. The
total head drops 3.8 m between two sections 30 m apart along the pipe.
a) What is the friction factor?
b) Whalt is the relative roughness of the pipe?

4,23, Water (v =1.14%10~%m?/s) flows through a 20-cm pipe which enlarges
suddenly to 40 cm in diameter. A differential manometer containing mercury shows
a deflection of 12 cm when connected across the enlargement. What is the flow rate?

4.24. The average velocity of a jet of water issuing from a round hole in the side
of anopen tank is 9.7 mss. The hole is 4.9 m below the free surface of the water in
the tank. What is the head loss due 1o viscous effecrs?

4.25. Calculate the pressure drop for a flow of crude oil {specific gravity s=0.87
and kinematic viscosity is 4.6 x 10~ ®m?/5) in a cast iron pipe of diameter of 30 cm
and length of 3 km. The average velocity of the oil may be considered as 2.5 m/s.

4.26. A 15-cm pipe is joined to a 30-cm pipe by a reducing flange. For water flow-
ing at a rate of 115 L/s, what is the head loss when the flow is from the smaller o
the larger pipe?

4.27. Water flows through a 20 cm diameter pipe of relative roughness 0,003 with
volumetric rate of 0,08 m3/s. Determine the pressure drop over 8 meter length of the
pipe. The flow is fully developed and u = 10.046 » 10~ % Pa.s.

4.28. A pipe line of 2 km length and diameter 15 cm is carrying drinking water at
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a rate of 20 kg/s, Calculate the power loss in the water due to friction. Consider
major losses in the pipe and minor losses due to 100 gate valves and 50 globe valves,
where all valves are fully opened, Note that Mo = 10046 10~ 4Ms/m?.

4.29. In Fig. (4.14) calculate the mass flow rate of water flowing from the exit of
the pipe (u=4.7x 10" %Pa.s.).

T ¥
T £
=+
L 3
&
Square edged g
=
5t. Elbow il
== n.ms/r |
d=2.5cm * A=
5m
Yig. 4.14

4.30. Calculate the difference in pressure between the two plenum chambers
about 12 m apart. The two chambers are connecled by a smooth pipe of diameter
2.5 em where air at 25°C flows from one chamber to the other at a velocity of 30
mss. MNegleet minor losses.

4.31. In Fig. (4.15) calculate the pressure P| of the oil in order to give an exit ave-
rage velocity C, =5.5 m/s.

il By
(sp. gr. 0.5)
(o =45x 1:;3511 5) 45° §t. elbow
Well atmosphere
e globe valve C, = 5.5mfs
Fig. 4.15
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4.32. What is the level, h, that must be maintained in the reservoir to produce a
volumetric flow rate of 0.027 m?/s. The inside diameter of the smooth pipe is 7.6 cm
and the pipe length is 90 m. The loss coefficient k for the inlet is 0.5, The water dis-
charges to the atmosphere.

90 m
7 I

| s

Fig. 4.16

General Problems on Chapter 4

4.33. The velocity distribution of air (at 27°C) in a turbulent boundary layer over
a flat plate is given by

1/7

Pl ¢

B ¥
U il}]

where U is the velocity of the free stream (=50 m/s) and & is the boundary layer
thickness, Calculate the displacement thickness at a location about 1.5m from the
leading edge of the plate.

4.35. A compressed air drill require an air supply of 0.23 kg/s at pressure of
6.33 > 10°PN/m? gauge at the drill. The hose from the air compressor to the drill has
175 em inside diameter. The maximum compressor dischage pressure is
6.67 x 10°N/m? gauge. Meglect changes in density and any effects due to hose cur-
vature. Air leaves the compressor at 38°C. Caleulate the longest hose that may be
used (g, at 38°C equals 18,76 ¥ 10~ % Pa.s, R, =0.287k] ke K.

4.36. A fire protection system is supplied from a water tower 24 m tall, The lon-
gest pipe in the system is 183 m, and is made of cast iron about 20 vears old. The
pipe diameter is 10 cm. Determine the maximum rate of flow through this pipe.
4, =10.046 < 10~ % Pa.s.

4.37. Consider fully developed laminar flow between two plates where the upper
plate is moving with velocity U, and the lower plate is moving with velocity U,
Assuming zero pressure gradient along the channel, find the velocity distribution at
any cross section and the average velocity,
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4.38. In Fig. (4.17) the flow rate is 0.4 m3/s and the discharge is
pressure, Determine the gauge pressure, P 1+ 1o produce the flow,

to atmaspheric

Py 4
Cr::;l;t.am )
level 3lmy well 50 m C
rounded [ s Castiron
Water ) ; = 20 ¢m
ez — e = 0.0014
150 m
Fig 4.17

4.39. In Fig. (4.18) determine the gauge pressure P | Lo produce the
(V =0.5 m*/s). For water take u,,=0.001 Pa.s

Constant :
level = 1 globe valve (fully open)

/ 9 st elbow

well rounded

—— ——
90° st elbow [ %0 cm —|
d=15cm
€ = (.002
Fig. 4.18

gate valve % open)
10 m

given flow rate

V=05m54
{atmospheric)
pressure

4.40. Determine the shaft work of the pump needed to lift the water shown in Fig.

(4.19) at a rate of 0.5 m¥/min. All pipes are 10 cm in diameter a
assumed smoaoth,
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25m

&
Y

13m

40 m
G m
Fump !"' .
: ! l‘_{; k|

Fig. 4.19

4.41. In Fig., (4.20) determine the maximum total length, L=1, + L+ L, that
gives the shown volume flow rate. For water take p, =0.001 Pa.s,

it o atmosphere globe valve (fully open)
[
43% 5t. el
Square edged Sy Vo= 0.07 m¥s
10 m |
d = 20 cm| atmosphere
v £ = (.003
L—_ .
Water
Fig. 4.20
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CHAPTER FIVE
INTRODUCTION TO COMFPRESSIBLE FLOW

4 —1— Introduction

In the following we will introduce some of the basic relations governing the
behaviour of a perfect compressible fluid, This analysis may be considered a
continuation of chapter three where the basic relations governing the behaviour of
non-viscous flows were discussed. The behaviour of actual compressible fluids is
discussed in other texts.

Liquids may be considered incompressible for a4 good range of pressure vana-
tions. Compressibility in fluid flow exhibits its effects mainly with gases. This is
usually demonstrated by changes in the density and temperature of gases under-
going compression or expansion processes. Ior this reason the behaviour of gases
receives more analvtical consideration in thermodynamic texts, Among these gases
is the perfect gas. A perfect gas. beside being non-viscous, 15 assumed 1o posscss
other qualities-such as infinite conductivity, perfect emissivity and absarbiivily..
eto-thatl makes it a reversible medium, A reversible medium is that which does not
degrade the availability of energy which it interacts with. Although a reversible
medium is practically non-existent,there seems Lo be in existence some processes that
occur almost in a perfect manner (that is a reversible manner). The travelling of
sound in gases is one of these processes. Stagnation of a flowing fluid is another
one.

A general reversible process in which the three fundamental properties; pressure
p, volume ¥ and temperature T of a gas change is known as a “reversible polytropic
process’ (see appendix C). Such process involves heat transfer between the gas and
its surroundings. If the process is reversible but adiabatic (that is no heat transfer
between the gas and its surroundings), then it is known as an “‘isentropic process’™.
The following is a summary of the fundamental properties relations for a perfect gas
undergoing a reversible polytropic process as deduced in appendix

i, (5.1)
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n (52)

P i (5.3)

L Ky (5.4)
l-n

e’ = K (5.5)

g

Also, the following is a summary of the fundamental properties relations for a
perfect gas undergoing an isentropic process as deduced in appendix:

By’ = RE. {5.(}]

pp = K, (5.7)
..(_'1_ o

™ = ﬁ? (5-8}
1=

o= % (5.9)
Pl
kA=

TP = %yp (5.10)

A perfect gas undergoing either of the above processes would still be governed by
the equation of state for gases, that is;

where:

Pv =RT, or F=pRT (3.11)

is the pressure of the gas

is the specific volume of the gas

is a constant

» 10

is the specific gas constant

1% the absolute temperature of the zas

is the polytropic index for compression or expansion of the gas

is the isentropic index for compression or expansion of the gas, given as’y
= {Cp/C,)



